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ABSTRACT
Purpose The aim of this study was to develop and test a semi-automated process for conducting routine active safety monitoring for new
drugs in a network of electronic healthcare databases.
Methods We built a modular program that semi-automatically performs cohort identification, confounding adjustment, diagnostic checks,
aggregation and effect estimation across multiple databases, and application of a sequential alerting algorithm. During beta-testing, we
applied the system to five databases to evaluate nine examples emulating prospective monitoring with retrospective data (five pairs for which
we expected signals, two negative controls, and two examples for which it was uncertain whether a signal would be expected): cerivastatin
versus atorvastatin and rhabdomyolysis; paroxetine versus tricyclic antidepressants and gastrointestinal bleed; lisinopril versus angiotensin
receptor blockers and angioedema; ciprofloxacin versus macrolide antibiotics and Achilles tendon rupture; rofecoxib versus non-selective
non-steroidal anti-inflammatory drugs (ns-NSAIDs) and myocardial infarction; telithromycin versus azithromycin and hepatotoxicity;
rosuvastatin versus atorvastatin and diabetes and rhabdomyolysis; and celecoxib versus ns-NSAIDs and myocardial infarction.
Results We describe the program, the necessary inputs, and the assumed data environment. In beta-testing, the system generated four
alerts, all among positive control examples (i.e., lisinopril and angioedema; rofecoxib and myocardial infarction; ciprofloxacin and tendon
rupture; and cerivastatin and rhabdomyolysis). Sequential effect estimates for each example were consistent in direction and magnitude with
existing literature.
Conclusions Beta-testing across nine drug-outcome examples demonstrated the feasibility of the proposed semi-automated prospective
monitoring approach. In retrospective assessments, the system identified an increased risk of myocardial infarction with rofecoxib and an
increased risk of rhabdomyolysis with cerivastatin years before these drugs were withdrawn from the market. Copyright © 2014 John Wiley
& Sons, Ltd.
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INTRODUCTION

Approximately one drug per year is withdrawn from
the US market for safety reasons, with a mean time
from approval to withdrawal of 6 years.1 During this
time, many millions of individuals can be exposed to
medications with unknown safety profiles. Rofecoxib,
a cyclooxygenase 2 inhibitor approved in 1999, was
withdrawn from the US market in 2004—after 80
million people worldwide had used the drug—because
of its association with myocardial infarction.2 This
association was subsequently confirmed by a meta-

analysis of 11 observational database studies.
However, nine of these studies were conducted after
rofecoxib’s withdrawal even though the drug and out-
come data used in each study were routinely collected
in near real-time in the electronic healthcare
databases.3 Prospective assessments analyzing the data
as they accrued could have identified this association
years before rofecoxib was withdrawn.4

Identifying potential drug safety concerns of new
drugs as quickly as possible requires three changes to
the traditional paradigm of single-database retrospect
drug safety assessments.5 It requires analyses that are
simultaneously conducted across multiple databases
to maximize sample size and in a sequential and
semi-automated fashion to identify potential safety
concerns as quickly as possible.5 Several initiatives
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around the world—including the Exploring and
Understanding Adverse Drug Reactions project,6 the
US Food and Drug Administration’s Mini-Sentinel
program7 and the Observational Medical Outcomes
Partnership8—are building large networks of elec-
tronic healthcare databases in which to assess drug
safety. The OMOP and Mini-Sentinel databases,
e.g., each comprise more than 100 million covered
lives.9,10 However, little attention has been paid to
the development of scalable programs specifically
designed to analyze data across these networks to
validly identify adverse drug effects as quickly as
possible as data accrue prospectively in these networks
after new drug approval.
We describe a semi-automated and scalable process

for conducting routine active drug safety monitoring to
rapidly and validly assess potential associations
between pre-specified drug-outcome pairs across a
network of electronic healthcare databases.

METHODS

Conceptual epidemiologic framework

The program is built on accepted epidemiological and
statistical principles and is designed to perform semi-
automated, distributed, sequential, propensity score
(PS)-matched, new user, parallel, active comparator
cohort analyses (Figure A1).11–14 The cohort design
is commonly used in pharmacoepidemiology to assess
the safety of drugs and has distinct advantages for a
wide range of drug safety questions.15 Comprehensive
guidance on selection of design and analysis methods
for a given routine monitoring question can be found
elsewhere.16–18 Details about the epidemiologic and
statistical principles used in this approach can be
found in the Appendix and elsewhere.12–16,19–23

Distributed data environment

The system is compatible with electronic healthcare
databases that have been converted into a widely used
common data model (CDM).24 To maximize data for
analysis at any given time after a drug enters the
market, the system is designed to perform analyses
that are both distributed across multiple databases
and sequential as more patients exposed to the drug
accrue in the databases. The standardized code incorpo-
rating pre-specified inputs (see succeeding text) can be
sent to multiple database holders who separately
analyze their data behind their own firewall. The code
can be run iteratively on each database as new data
become available. Data can then be aggregated both
over time and across databases at a central hub.

Program architecture

The standardized program comprises five main
modules: (i) a cohort identification module;25 (ii)
an adjustment module; (iii) a diagnostics module;
(iv) an aggregation module; and (v) an alerting al-
gorithm module. The first three modules are run
in a distributed fashion behind each database
holder’s firewall. Analytic diagnostic information
and aggregated and de-identified information are
transmitted from each database holder to the cen-
tral hub, which further aggregates data across sites
by estimating a site-stratified summary point esti-
mate (aggregation module) and applies a sequen-
tial alerting algorithm (alerting algorithm module).
Steps involved in each of these modules are described
in more detail in the succeeding text. For practical pur-
poses, we designed the program in a “one-stop-shop-
ping” fashion such that all information is obtained
from each database in a single query in each sequential
period, limiting the amount of time and resources
required by the database holder. The first four modules
are written as SAS macros, and the current alerting
algorithm module is written in R. As such, the full pro-
gram requires each database holder to run SAS and the
central hub to run both SAS and R. SAS is an industry
and regulatory standard for electronic healthcare
database analyses.
The five modular components of the program

perform 10 key steps to implement the epidemiologic
and statistical methods (Figure 1):

1. Investigator(s) specifies clinical and epidemiologi-
cal inputs

The first two steps outlined in Figure 1 require ex-
pert determination of appropriate clinical and epide-
miological inputs and some manual operation,
hence the term “semi-automated” active surveil-
lance. The basic cohort design requires specification
of the drug of interest, the comparator of interest,
the duration of the washout period to ensure that
patients are “new users,” codes for pre-defined co-
variates (including both potential confounders and
indicators of subgroups of interest), the risk win-
dow following treatment initiation over which out-
comes will be ascertained, codes for the outcome
(s) of interest, and the calendar period over which
new drug users will be identified.

2. Central hub transmits code to each database holder
for execution

Once the inputs have been specified, the central hub
sends a package with the modular code and the drug,
outcome, and covariate files to each database holder.
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Each database holder executes the same standardized
SAS code on their CDM-formatted data.

3. Automatic cohort creation and outcome identification

The code automatically implements the first three
modules, which involves steps 3–7. First, the code
implements a cohort identification module developed
by the Mini-Sentinel pilot project.25 This program
draws in the drug files to identify new users of the drug
of interest and new users of a comparator drug. This
cohort is then subject to the adjustment module, which
comprises steps 4–7.

4. Automatic covariate ascertainment

The adjustment module queries each cohort patient’s
electronic data history to identify pre-specified and
empirically identified covariates. Pre-specified covari-
ates are determined by codes indicated in the pre-
specified covariate SAS data files. These will
typically include demographic variables, such as
age and sex, and algorithms to identify known risk
factors for the outcome(s) of interest. The program
also automatically identifies empirical covariates
using the high dimensional PS (hd-PS) algorithm.13

The adjustment module can also identify whether
and when cohort patients experience the outcome
of interest. The program identifies outcomes with
a “plug-in” macro that can accommodate any out-
come definition that uses elements in the CDM. It
also allows for both as-treated and intention-to-treat
exposure definitions.
The program automatically computes the com-

bined comorbidity score for each patient. This score
has been shown to outperform both the Charlson
index and the Elixhauser comorbidity system.26

The program also identifies measures of health ser-
vice utilization intensity, including number of
unique drug codes dispensed, number of physician
visits, and number of hospitalizations in the base-
line period.27

5. Automatic PS estimation

Once the program has identified variables for adjust-
ment, it includes them as independent variables in
logistic regression models that estimate three data-
base-specific PSs for each patient. PS1 is based only
on pre-defined variables, PS2 based on only hd-PS-
identified empirical covariates, and PS3 includes both
sets of covariates. Importantly, the latter two PS
models will include different variables across each
database. The hd-PS algorithm will empirically iden-
tify the most relevant confounders within a dataset
and incorporate them into the site-specific PS model.

This will improve adjustment because confounding
can manifest differently across sites due to differences
in treatment decision processes and data content.20,28

6. Automatic PS matching

The program then uses each set of PS values to match
patients within each data base Initiators of the drug of
interest are matched to initiators of the comparator using
multiple matching strategies. The first version of the
program conducts 1:1 matching using each of three
calipers of 0.025, 0.05, and 0.10 units on the PS scale.
The program also conducts variable ratio matching with
a ratio of up to 100:1. As the program is iterated as new
data accrue in each database, it re-estimates the PS on all
initiators that have accrued in each database by the time
of each data update, but matches only initiators in each
new batch of data.29 That is, once patients are matched
and included in an analysis, they remain as such regard-
less of how the future data change their PS values.

7. Automatic diagnostic and data file preparation

Once the database-specific analytic steps are complete,
the program creates a de-identified patient-level aggre-
gated transfer data file for each database. This transfer
file includes randomly generated patient identification
numbers, an indicator of exposure status, an indicator
of whether patients experience the outcome of
interest, the person-time of follow-up between the
index date and date of censoring (i.e., first of end of
the exposure period, outcome occurrence date, death,
disenrollment, or end of analysis period), the three
PS values, and a matched set indicator for each
matching strategy. This transfer file is considered de-
identified and anonymous according to the Health In-
surance Portability and Accountability Act (HIPAA)
and does not require HIPAA waivers.30 When sub-
group analyses are anticipated, the file will also include
indicators for each patient’s subgroup status. An identical
file that also contains patient identifiers remains behind
each database holder’s firewall.
The program generates diagnostic information

describing the discrimination of the PS models
(i.e., c-statistics), plots depicting the overlap in PS dis-
tributions between treatment groups before and after
matching (Figure A2), and summary tables and figures
describing the baseline demographic and clinical
characteristics, and the extent to which these variables
are balanced individually and overall.

8. Central hub evaluates diagnostics and determines
whether to aggregate

Before looking at any effect estimates characterizing
the association between the drug and outcome, the
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central hub can review the diagnostics from each data-
base and compare descriptive data across the
databases. This enables identification of issues such
as under- or over-ascertainment of covariates, expo-
sures, or outcomes in one or more databases, identifi-
cation of substantial differences in demographic and
clinical characteristics of cohort patients across
databases, and comparisons of the extent to which
covariate balance is achieved in each database. As
with step 1, this step requires human input. The central
hub can then decide whether and which data to aggre-
gate into a single summary effect estimate. Although
these diagnostic steps are recommended, they are not
required to performing monitoring with the system.

9. Central hub aggregates data and applies code for
sequential alerting algorithm

After deciding to combine data, the central hub uses
the aggregation module to automatically aggregate
data across databases and over time. Multiple
measures of association can be calculated, including
the hazard ratio and rate difference. The central hub

can further stratify the outcome models by subgroup
indicators.31 The aggregation module then prepares
the inputs for assessing whether a safety alert should
be raised.
Currently, the sequential alerting process uses R code

developed by Kulldorff and Silva to perform formal sta-
tistical tests using the maximized sequential probability
ratio test (maxSPRT) developed by Kulldorff et al.4,32

The maxSPRT is a continuous monitoring algorithm
that was developed for monitoring vaccine safety in ob-
servational data and easily accommodates the poten-
tially irregular database updating schedule.33 The
sequential matched cohort approach also accommodates
other alerting algorithms that can enable ongoing moni-
toring beyond the pre-specified runtime of formal statis-
tical hypothesis tests.12,34

10. Central hub uses results to determine whether to
iterate

The outputs of the aggregation and sequential alerting
programs include effect estimates and alerting criteria.
The central hub uses this information to determine

Figure 1. Operational steps to implement modular program to perform semi-automated propensity score-matched new user cohort analyses
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whether to continue prospective monitoring, which
would involve rerunning steps 3 through 10 when the
databases are refreshed with new data. Each time the
program is iterated, the database holders rerun the
program on their growing databases and create a
de-identified aggregated dataset that includes all cohort
members to date. The central hub then aggregates and
analyzes the PS-balanced appended dataset from each
databases when conducting sequential monitoring.

Empirical examples

We have used empirical data from nine exposure-
outcome pairs to beta-test the program at various points
throughout development.11,12,14 Here, we summarize
the results to describe the overall performance of the
program. For each example, we emulated prospective
monitoring of each drug of interest. For six examples
(cerivastatin, telithromycin, rofecoxib, celecoxib, and
the two rosuvastatin examples), we began monitoring

at the time the drug of interest entered themarket. Table 1
summarizes these examples and provides our a prior
expectation about whether the example was one in which
we expected to observe a signal. Five pairs were exam-
ples for which we expected signals, two pairs were neg-
ative controls, and two pairs were examples for which it
was uncertain whether a signal would be expected.
We used data from five sources, which are described in

the Appendix. For simplicity, we used a conservative
maxSPRT critical value based on an upper limit of
surveillance defined by the occurrence of 2000 events.
We used a 96-terabyte, 96-processor IBM-Netezza
parallel-computing database supercomputer with a Unix
pre-processing unit to test and run the modular program
using SAS 9.2 and R.

RESULTS

In emulated prospective monitoring, we observed an in-
creased rate of myocardial infarction among rofecoxib

Table 1. Overview of empirical examples

Drug of
interest Comparator Outcome(s)

Follow-up
period Data source(s)*

Signal
expected?

Cerivastatin Atorvastatin Rhabdomyolysis Duration of
index
treatment

(1) New Jersey Medicare data linked to pharmacy
assistance program; (2) Pennsylvania Medicare data
linked to pharmacy assistance program

Yes

Paroxetine Tricyclic
antidepressants with
low affinity for
serotonin receptors

Gastrointestinal
bleed

90 days
following
treatment
initiation

HealthCore Integrated Research Database (HIRD) Yes

Lisinopril Angiotensin receptor
blockers

Angioedema Duration of
index
treatment plus
30 days

HIRD Yes

Ciprofloxacin Macrolide antibiotics Achilles tendon
rupture

183 days
following
treatment
initiation

HIRD Yes

Rofecoxib Non-selective non-
steroidal anti-
inflammatory drugs

Myocardial
infarction

180 days
following
treatment
initiation

(1) New Jersey Medicare data linked to pharmacy
assistance program; (2) Pennsylvania Medicare data
linked to pharmacy assistance program; (3) Medicaid
Analytic eXtract (MAX) (covering Medicaid beneficiaries
in 48 states).

Yes

Telithromycin Azithromycin Hepatotoxicity 60 days
following
treatment
initiation

(1) HIRD; (2) New Jersey Medicare data linked to
pharmacy assistance program; (3) Pennsylvania Medicare
data linked to pharmacy assistance program

Uncertain

Rosuvastatin Atorvastatin Diabetes Duration of
index
treatment

(1) HIRD; (2) New Jersey Medicare data linked to
pharmacy assistance program; (3) Pennsylvania Medicare
data linked to pharmacy assistance program

Uncertain

Rosuvastatin Atorvastatin Rhabdomyolysis Duration of
index
treatment plus
60 days

(1) HIRD; (2) New Jersey Medicare data linked to
pharmacy assistance program; (3) Pennsylvania Medicare
data linked to pharmacy assistance program

No

Celecoxib Non-selective non-
steroidal anti-
inflammatory drugs

Myocardial
infarction

180 days
following
treatment
initiation

(1) New Jersey Medicare data linked to pharmacy
assistance program; (2) Pennsylvania Medicare data
linked to pharmacy assistance program

No

*All data sources comprise administrative claims data including demographic data, medical claims from healthcare providers and facilities, and outpatient
pharmacy dispensing records.
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initiators as compared to PS-matched initiators of ns-
NSAIDs (Figure 2). The overall rate difference was
2.24 myocardial infarction events (nominal 95% confi-
dence interval, 1.10–3.38) per 1000 person-years com-
paring rofecoxib initiators versus ns-NSAID initiators.
The corresponding hazard ratio was 1.19 (nominal
95% confidence interval, 1.09–1.30). This is con-
sistent with previous formal pharmacoepidemiologic
studies.35,36 Overall hazard ratios for each example
are listed in Table 2. For each example, we observed
results that were consistent in direction and magnitude
with our a prior expectation based on previous
pharmacoepidemiologic studies.3,12,14,19,37–40

The maxSPRT generated timely alerts for lisinopril,
rofecoxib, ciprfloxaxin, and cerivastatin, all true
positives (Figure 3). No other alerts were generated
during the monitoring time frame, but the maxSPRT
had not yet reached the end of its pre-specified
runtime, meaning that the algorithm had not yet
achieved its full statistical power.
Table A1 presents an example table describing

baseline characteristics of matched rofecoxib and ns-
NSAID initiators from the first monitoring period from
the MAX database. As part of the diagnostic output,
Figure A2 presents example histograms and smoothed
densities of the PS values among rofecoxib initiators
and ns-NSAID initiators, both before and after
matching by the PS. Panel A of Figure A2 illustrates
substantial overlap in PS distributions between
patients in the two treatment groups, which is a
prerequisite for valid effect estimation. As expected,
the PS distributions are highly overlapping after
matching (Panel B).

Table A2 presents the run time required for cohort
identification module and the adjustment module,
and each computationally intensive component of the
adjustment module, in the large Optum database. In
this representative example, the total time to analyze
data for more than 150 000 patients drawn from a pool
of about 50 million covered lives was less than 3.5 h.
The bulk of the computational time resided with
extracting the analytic cohort from the main database.

DISCUSSION

We have developed a program to perform distributed,
sequential, PS-matched, new user cohort studies in a
reproducible and scalable manner. The SAS-based
modular program can be run simultaneous on multiple
databases converted into the freely available Mini-
Sentinel CDM24 and iteratively as experience with

Figure 2. Emulated prospective monitoring results for myocardial infarction among initiators of rofecoxib versus initiators of non-selective non-steroidal
anti-inflammatory drugs

Table 2. Summary of results of nine examples

Example
Total number of
observed events

Hazard ratio (95% confidence
interval) at end of monitoring

Cerivastatin 6 ∞*
Paroxetine 38 1.72 (0.89, 3.32)
Lisinopril 344 1.92 (1.54, 2.41)
Ciprofloxacin 22 1.45 (0.62, 3.39)
Rofecoxib 1937 1.19 (1.09, 1.30)
Telithromycin 41 1.26 (0.68, 2.33)
Rosuvastatin
(diabetes)

1914 0.95 (0.87, 1.04)

Rosuvastatin
(rhabdomyolysis)

8 0.39 (0.08, 1.94)

Celecoxib 226 1.16 (0.83, 1.64)

*All events occurred among cerivastatin initiators.
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new medical products accumulates in the databases.
To improve the robustness of the output and to support
decision-making, the program is based on validated
design and analysis methods that are commonly used
in pharmacoepidemiology to address the limitations
of secondary electronic healthcare data. It uses PSs
to achieve covariate balance between treatment
groups. PSs possess many attractive properties in the
active safety monitoring setting, including that they
easily address non-exchangeability on measured
covariates, which is a prerequisite for causal inference
(i.e., matching implicitly excludes patients in areas of
non-overlap), they enable evaluation of multiple
outcomes per exposure (as with the rosuvastatin
example), and they simplify data aggregation and
enable application of a wide range of sequential
alerting algorithms, such as those for matched data
(e.g., maxSPRT) or those for continuous monitoring
(e.g., statistical process control rules).
In beta-testing, across nine examples and using var-

ious data sources, the modular program consistently
produced results in line with expectation with respect
to both the direction and magnitude of associations.
Our beta-test analyses were not sufficiently powered
to generate an alert for paroxetine, but the log-
likelihood ratio was trending upwards, suggesting that
it might generate an alert with continued monitoring or
with larger distributed data networks, such as with the
Mini-Sentinel distributed database.7 Once the system
generates an alert for a particular example, formal
hypothesis testing with the maxSPRT ends. However,

continued monitoring of the point estimate can provide
additional information as part of signal follow-up
activities. With ciprofloxacin, the system generated
an alert in the ninth monitoring period, but continued
monitoring produced a point estimate that was closer
to the null and with a nominal 95% confidence interval
that included one. Additional analyses would be
needed to determine the cause of such a pattern, such
as possible changes in drug prescribing over time.
Overall, when sufficiently powered, the program gen-
erated alerts for known positive associations but did
not generate any alerts for any negative control drug-
outcome pairs. Subsequent evaluations of the program
against a large number of positive and negative
controls will provide more comprehensive insight into
its overall operating characteristics.
The program is designed to ensure that identifiable

patient-level information remains behind each data-
base holder’s firewall. Only de-identified, aggregate
data are shared with the central hub. However, the
data are shared in a way that enables diagnostics
and preserves substantial flexibility for the central
hub at the aggregation step. This permits the central
hub to conduct subgroup analyses based on pre-
specified subgroup indicators to exclude data from
selected databases in which sufficient covariate
balance is not achieved or when data issues arise,
and to conduct post hoc sensitivity analyses by
incorporating the PSs into the analysis in different
ways. Additionally, other methods, such as disease
risk scores, can be built into the existing cohort

Figure 3. Results of the maximized sequential probability ratio test for nine drug-outcome monitoring examples
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framework and can be used either along with or in
place of PSs.41 Disease risk scores derived in a re-
cent and similar historical population have shown
promise for confounding control in the setting of
newly approved drugs.
The safety monitoring process that we have

described is easily scalable along several dimensions,
including (i) the number of drug-outcome pairs
monitored, including multiple outcomes per drug; (ii)
the number of subgroups evaluated; (iii) the number
of sequential analyses conducted; and (iv) the
number of databases used. The rate-limiting step in
deploying the system will likely be the decision-
making process required to initiate each monitoring
activity (i.e., Step 1). Importantly, the program
requires clinical and epidemiological expertise for
determining, first, whether the program should be
applied to a specific scenario (i.e., whether it is the
right tool for the job) and, second, the most appropri-
ate inputs. While this process can be structured and
expedited,16–18 it requires considerable clinical and
epidemiologic input to ensure that each monitoring
activity will answer the most relevant clinical and
regulatory question. Otherwise, the system can be
run automatically with very little investigator input.
However, if desired, the system does allow for investi-
gator input at various steps throughout the process, as
we have described.
The program has some important limitations. First,

the methods that it implements may not be optimal
or even appropriate for all monitoring scenarios.
Clinical and epidemiologic expertise is required to
ensure that the program is applied to scenarios that it
is well suited to address. Second, even when the
program is appropriately applied, it has inherent
limitations. These include, but are not limited to, the
need for sufficient numbers of initiators of the new
drug of interest to fit propensity scores in the early
marketing period and the lack of analytic ability to
address time-varying confounding.
In conclusion, we have developed and tested a scal-

able, semi-automated process with modular programs
to conduct rapid prospective drug safety monitoring
across a distributed data network and iteratively as
new data accrue in the network. The program
integrates widely used pharmacoepidemiologic design
and analysis tools in a modular fashion. We are
currently testing this modular programwith live Data Part-
ners in the Mini-Sentinel Distributed Data network.
The program, including code and technical specifications,
has been made publicly available through the Mini-
Sentinel program website—http://mini-sentinel.org/
methods/methods_development/details.aspx?ID=1045.
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