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Comparative-effectiveness research (CER) aims to produce 
actionable evidence regarding the effectiveness and safety of 
medical products and interventions as they are used outside of 
controlled research settings (Figure 1a).1 The ultimate goal is to 
support optimal decision-making by stakeholders in the health-
care system, including patients, physicians, provider organiza-
tions, industry, and insurers. Although ~50% of drugs newly 
approved by the US Food and Drug Administration (FDA), 
including anti-infectious medications and anti-neoplastic agents, 
undergo some sort of active comparator analysis in preapproval 
trials,2 such information is often insufficient to answer all ques-
tions regarding optimal prescribing of these new agents. CER—
using secondary health-care data, including electronic medical 
records (EMRs), longitudinal claims data, and registries—offers 
the benefit of studying outcomes of these medicines under the 
conditions of routine medical practice without intervening in the 
delivery of the care that gives rise to the data. However, owing to 
inherent methodological limitations in this approach, additional 
research strategies will need to be applied, including randomized 
trials, in which greater validity is usually traded off against gener-
alizability of findings to the day-to-day practice of medicine.

With newly marketed agents, the sooner valid CER results 
can be produced, the more useful they are to all stakeholders 
(Figure 1b). Insurance coverage decisions must be made shortly 
after marketing authorization. Products marketed with evidence 
of benefits and/or tolerability superior to existing alternatives 
will likely receive preferential coverage in health plans (e.g., 
reduced copayment for patients) and therefore will be taken up 
more rapidly by the marketplace. On the other hand, insurers 
seek timely comparative data to avoid fast and diffuse adoption 
of less effective or possibly harmful drugs; once prescribing pat-
terns are established, they are difficult to change, even in the 
face of compelling evidence of comparative effectiveness (CE). 
For example, although ezetimibe has not been proven superior 
to statins,3 it has been used widely since its approval.4 Many 
countries already make coverage decisions based on evidence 
of incremental CE,5 and in the United States the FDA and the 
Center for Medicare and Medicaid Services have agreed to work 
together more closely to allow for simultaneous review of drug 
approval and coverage.6 Consequently, generation and synthe-
sis of CE information will become increasingly important to 
portfolio management early in the development process7 and 
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will ultimately affect the financial valuations of pharmaceutical 
companies.8

Observational (nonrandomized) studies fill a critical gap 
in the CER landscape.9 However, these studies face many 
challenges,10 which are amplified when such studies are used to 
compare the effectiveness of newly marketed medications. Key 
methodological challenges include (i) potential bias due to chan-
neling of patients to the newly marketed medication because 
of patient-, provider-, and system-related factors; (ii) a quickly 
shifting user population with varying levels of background risk 
during the early phase of marketing;11 and (iii) the lack of timely 
data and the often small number of users in the first few months 
of marketing, the latter of which reduces the precision of effect 
estimation and limits subgroup analyses. Of these challenges, 
channeling is often the biggest threat to the validity of nonrand-
omized studies and may become more extreme if the medication 
of interest is a first-in-class agent.

Given that a drug’s value to society is critically influenced by 
its performance outside of a controlled research environment, 
decisions on how CER evidence will be generated must be made 
as early as possible. In this article, we characterize the meth-
odological challenges faced when assessing the CE of newly 
marketed medications as they are used in day-to-day care. We 
focus our discussion on what we call phase IVA activities, those 
occurring during the transitional time between a product’s mar-
keting authorization and the achievement of the “quiescent state” 
in which use patterns, market share, and insurance coverage 
have stabilized. This transitional period may last 6 months after 
marketing for some drugs and 2–3 years for others, depending 

on the speed of uptake, the generation of actionable evidence, 
and other factors.

In light of these challenges, we propose a framework that inte-
grates evidence from multiple sources for assessing the CE of 
drugs in the early marketing period. This is followed by a discus-
sion of the opportunities and challenges for a drug development 
process whose goal is to establish the CE of products early dur-
ing marketing; we also make suggestions for structural changes 
throughout the development process in order to support early 
generation of CE evidence.

Methodological Challenges
Owing to the absence of CER results in the early marketing 
setting—when multiple stakeholders seek such data to inform 
decision-making—payers increasingly conduct their own 
postmarketing observational CE studies based on longitudinal 
claims data from their own enrollee population.12 However, 
nonrandomized research on the effectiveness of medications 
is methodologically challenging, and conducting such studies 
in a new-to-market setting only increases the difficulty. In this 
section, we consider the general challenges of nonrandomized 
CER as well as challenges that are specific to newly marketed 
medications.

Selective prescribing of drugs that are new to the market will 
lead to confounding
Where a patient is well controlled on an existing medication, 
there is little incentive to change the current treatment. On the 
other hand, new medications create expectations of improved 
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Figure 1  Comparative-effectiveness research (CER). (a) Goal of CER in contrast to preapproval randomized controlled trials (RCTs). (b) The increasing value of 
CER during the drug life cycle.
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effectiveness and tolerability, particularly among patients for 
whom existing therapies may not have performed optimally. 
Consequently, early users of a newly marketed medication may 
not be representative of a drug’s eventual user population.13 Any 
imbalances in disease severity, prognosis, or risk profile between 
users of the new drug and comparison patients may bias effect 
estimates in nonrandomized studies, unless such confounding 
factors can be fully adjusted for or, if specific, homogeneous 
patient subgroups can be identified.14 In this section, we address 
the effects of selective prescribing on study validity and then 
suggest methods to combat the resulting potential for bias.

As health-care professionals, we like to think that prescribing 
decisions are precisely tailored to each patient’s expected ben-
efits and risks. If this were true, however, we would have a fully 
deterministic model for treatment choice; if this model were 
codified in a universally accepted and strictly followed treatment 
guideline, there would remain no random variation in patients’ 
treatment assignment. In this scenario, all treatment–outcome 
associations would be intractably confounded and nonran-
domized CER would be impossible. On the other hand, CER 
would be unnecessary, because any relevant knowledge about 
the relative performance of medications would have already 
been incorporated into the treatment choice model.

Fortunately for epidemiologists (but to the frustration of 
guideline writers), this is rarely the case, and we often observe 
substantial variations in treatment assignment that cannot be 
explained by patient characteristics. Epidemiology seeks to 
identify and exploit this random variation in exposure status by 
comparing patients with concordant baseline risk but discord-
ant exposure status for the outcome of interest.1 The assump-
tion underlying successful nonrandomized CER is that we can 
measure and assess patients’ baseline risk in order to identify 
valid differences between treatment groups.

Health-care systems and the care decisions made within them 
are inherently hierarchical. Patient-, provider-, and system-
level factors can all affect whether particular patients receive 
new drugs (Figure 2). If these factors contribute to variation 
in exposure and are also causes of an outcome of interest, then 
they are confounders that need to be addressed. If these fac-
tors contribute to variation in exposure but are unrelated to the 
outcome, then they contribute to exposure variation that can be 

harnessed and exploited using instrumental variable estimation 
in an effectiveness study. However, determining the category 
into which specific factors fall is often difficult.10

Patient-level confounding. Patient characteristics that drive 
new drug use decisions can vary from drug to drug, and the 
early users of newly marketed medications may be selective with 
respect to factors related to both expected effectiveness and tol-
erability of the new medication.

In medications such as statins, of which there are many 
agents in a class, the first patients to use a new agent are likely 
to be those who have suffered side effects from existing agents 
or who have not achieved sufficient low-density lipoprotein 
cholesterol control. The first patients with rheumatoid arthri-
tis to use a new immunomodulating drug are probably those 
who experienced little or no benefit from existing drugs and 
may therefore respond to the new drug in a way that the aver-
age patient would not. Patients with atrial fibrillation who are 
using a new direct thrombin inhibitor are likely to be those in 
whom coagulation could not be well controlled with warfarin 
or patients who find the monitoring requirements or side effects 
of warfarin intolerable.

When exenatide (Byetta) came to market, Segal et al. found 
that users of the drug during its first 3 months after marketing 
had a history of more visits to a physician in the previous year, 
had a slightly higher level of glycolated hemoglobin, and had 
used insulin and oral antidiabetic medications more often, as 
compared to patients who were initiated 6 or 7 months after 
marketing.13 We observed similar selective prescribing to sicker 
patients in the first quarter of marketing of selective cyclooxy-
genase-2 inhibitors, which are analgesics targeted to patients 
with preexisting upper-GI complaints.11 It may not be feasi-
ble to find a suitable comparison group for a nonrandomized 
study of patients in whom treatment with a new direct thrombin 
inhibitor is initiated, given that the population of first users of 
the new drug will likely be enriched with those who have previ-
ously found warfarin therapy to be problematic. Therefore, early 
users of newly marketed medications may be highly differential 
with respect to the benefits and adverse effects of alternative 
treatments.

In the extreme case, patient populations are simply not compa-
rable in the immediate postmarketing period. If, after estimation 
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Figure 2  The multilevel nature of factors that determine prescribing of newly marketed medications.
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of a propensity score (PS)—the predicted probability of receiving 
the new drug over an old treatment, conditional on all observed 
patient characteristics15—a plot of the PS distributions shows 
absence of overlap (Figure 3), we can infer that for no patient 
who received the new drug would the old drug have been a 
reasonable treatment choice, and vice versa. In other words, 
there is no “equipoise” between the two agents: because some 
characteristic or set of characteristics completely determined 
the patients’ treatment choice, these patients would never have 
been deemed comparable in a clinical trial. These characteristics 
may come from areas beyond traditional exclusion criteria for 
randomized clinical trials (RCTs); they could be patient-related 
(e.g., nonresponse to earlier therapies), physician-related (no 
experience with the new drug), or system-related (no coverage 
for the new drug).

As time goes on, such selective use may diminish as a result 
of actual or perceived evidence of benefit of the new drug in 
the broader population. General uptake of the drug will make 
patients receiving the new drug more similar to those on the 
older therapy, and the PS distributions will migrate toward each 
other, increasing the amount of overlap (Figure 4). With sub-
stantial overlap, a larger number of comparable patients can be 
identified. We must assume that all confounders are observed; 
without this assumption, the large overlap in distributions may 
be an artifact of omitting an important discriminating factor 
from the PS model.10

Validity/generalizability trade-off: Unlike in most clinical tri-
als, the goal of CER is to be generalizable to the broad group of 
patients receiving therapies outside of controlled research envi-
ronments.16 However, in the early marketing phase, the scenario 
represented in Figure 4 may be common. Initially there may be 
only a small subgroup of patients—those whose PSs overlap—
who are similar with respect to a wide range of characteristics 
and can be validly compared. These patients may sometimes be 
easily identifiable (e.g., they may be of a particular age group); 
in other cases, the composition of the subgroup may be more 
abstract (e.g., patients who did not respond well to earlier thera-
pies). Whatever the case, it may be necessary to impose stringent 
restrictions before attempting to make a valid inference from 
the data, thereby inevitably limiting the generalizability of the 
CE results. Indeed, these restrictions may yield patient popula-
tions that resemble those studied in RCTs. It has been repeatedly 
demonstrated that similar restrictions in nonrandomized CER 
studies resulted in findings comparable to those of RCTs.14,17

More broadly, as Psaty notes, the validity/generalizability 
trade-off is a familiar phenomenon but should nonetheless 
be considered when we speak about CER and its goal of being 
as generalizable as possible to all patients in routine care.18 
Although we support that goal, we ultimately choose validity 
over generalizability—not as an academic exercise but as a mat-
ter of good practice—when making treatment choices and public 
health recommendations. The cost of the trade-off may not be as 
great as it is often perceived because, from a clinical perspec-
tive, the most important generalization to make is about the 
comparability of therapies among patients for whom either of 
the drugs would be a reasonable treatment choice. CER among 
these patients may not yield the most generalizable informa-
tion, but it will yield information that is most relevant to clinical 
decision making.

Effect measure modification: So far we have interpreted the 
nonoverlap in Figure 4 as being driven purely by confound-
ing factors. As the user population shifts over time toward the 
“average” patient, we generally expect the influence of con-
founding to diminish. However, changes in the composition 
of the user population over time have ramifications not only 
for confounding but also for the introduction of possible effect-
measure modification. As the composition of the user group 
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Figure 4  Increasing comparability of treatment groups with increasing market availability of a newly marketed drug. With increasing market penetration, 
the initiators of the new drug (blue solid curve) become more similar to those initiated into treatment with the older competitor drug (red broken curve), 
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changes, the baseline risk scores of the outcomes of interest 
(intended and unintended) may vary. In that event, a change in 
population-wide point estimates might reflect the fact that the 
drug truly has biologically different effects in different patients, 
and the observed difference is a causal modification of the treat-
ment effect measure.19 Although it is theoretically possible to 
identify such effect-measure modification in the early treat-
ment period, in practice there may not be adequate numbers 
of treated subjects during this period for reliable subgroup 
estimation.

Physician-level confounding. Physician-level confounding 
stems from differences in the treatment choices two physicians 
may make for the same patient. With new drugs, some prescrib-
ers are early adopters; indeed, some physicians would almost 
automatically prescribe the newest medication when it becomes 
available. Other physicians may strongly prefer older medica-
tions with proven track records.

In a Medicare population (≥65 years of age) with insurance 
coverage through a pharmacy assistance program involving 
no restrictions or minimum copayments, we studied phy-
sicians’ adoption of cyclooxygenase-2 inhibitors (coxibs) 
as an alternative to traditional nonselective nonsteroidal 

anti-inflammatory drugs (NSAIDs).11 Figure 5a illustrates 
the fast adoption of coxibs among NSAID prescribers. Within 
two calendar quarters, half of the physicians had prescribed 
a coxib at least once, but even after two years, 20% of the pre-
scribers had still never prescribed one. Conversely, we also 
identified physicians who always prescribed coxibs and never 
chose traditional nonselective NSAIDs (Figure 5b). One year 
after coxibs entered the market, 40% of the physicians fell into 
this group.

Although these variations in treatment may suggest confound-
ing, it is important to distinguish between physician factors that 
influence only exposure vs. those that influence both exposure 
and the study outcome. The latter is true confounding and can 
be handled with matching, stratification, regression, or other 
standard techniques. The former case—when the factor pre-
dicts exposure but not outcome—is actually an example of an 
instrumental variable. These instrumental variables should not 
be treated as confounders; doing so in the presence of residual 
confounding may actually increase bias.20,21 Instead, they can 
be exploited as a source of natural variation and used to obtain 
an unbiased effect estimate, even in the presence of unmeasured 
confounding.
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Figure 5  Rapid adoption of selective cyclooxygenase-2 inhibitors (coxibs) by prescribers as alternatives to traditional nonselective nonsteroidal anti-
inflammatory drugs (NSAIDs) after coxibs entered the market in January 1999. (a) Time to first selective coxib prescription among all 6,972 prescribers of NSAIDs. 
(b) Proportion of prescribers who chose coxibs instead of traditional nonselective NSAIDs as the first NSAID prescription for their patients in 50% (100%) of 
instances (restricted to 464 high-volume prescribers with at least three first-time NSAID prescriptions per quarter).
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As an example, we have previously argued that if physicians 
with a strong preference for coxibs are comparable to those who 
strongly prefer traditional nonselective NSAIDs in all other 
aspects that may influence patients’ health outcomes, and that 
if patients select physicians without knowledge of their pref-
erence, then the prescribing preference of the physician is an 
instrumental variable for which standard methods can be used 
to obtain unbiased effect estimates.1,22–24 On the other hand, 
if the differences between prescribers who prefer coxibs and 
those who prefer traditional nonselective NSAIDs are associ-
ated with disease severity (e.g., if sicker patients consult special-
ists who may be early adopters) or treatment outcomes (e.g., if 
early adopters provide better care in other ways that improve 
prognosis), then these physician-level characteristics should be 
treated as confounders.25,26

The prescribing preferences of physicians with respect to 
newly marketed medications may be further influenced by 
direct-to-consumer advertising.27,28 To remain competitive, or 
simply to please patients, some physicians may be more likely 
to respond to patients’ demand for newly marketed drugs. If 
physicians’ response to direct-to-consumer advertising is differ-
entially linked with patient characteristics and health outcomes, 
it may be a source of bias. We note that this phenomenon is 
hypothetical at this point, and, to our knowledge, it has not yet 
been observed in practice.

System-level confounding. All patients and physicians oper-
ate within health-care systems that impose additional influ-
ences/constraints on treatment decisions, affect the uptake of 
newly marketed medications, and may determine which patients 
receive newly marketed drugs. These factors may often be 
uncorrelated or only weakly correlated with patients’ potential 
outcomes and therefore will not induce strong confounding. A 
major system-level determinant is restriction on insurance cov-
erage and accessibility: an unfavorable formulary position may 
require high patient copayments, prior authorization, and step 
therapy, all of which limit access to coverage.29 Indeed, in the 
early months, certain plans may simply not cover new-to-market 
drugs at all. Beyond the plan level, local or national provider 
communities produce treatment guidelines that may channel 
patients into preferred treatment options.

Sparse data during the early marketing phase
Unless a newly marketed medication has a spectacularly success-
ful launch, it will take time for enough users to accrue to enable 
a direct comparison of a new drug with an old one. The causes 
of slow uptake are largely the same as the factors (described 
above) that can induce potential confounding: a rare condition/
therapeutic target, a narrow indication, high drug cost, lack of 
payer coverage, limited perceived effectiveness, and an unfavo-
rable safety profile. The early marketing phase (phase IVA) is 
dynamic, and some of these factors may quickly shift as addi-
tional CE information becomes available.

Several statistical aspects of CER are affected by slow uptake 
of a newly marketed medication. Most obviously, studies based 
on a small number of patients will yield imprecise effect esti-
mates. The precision of estimates is further compromised if 

the outcome of interest is infrequent, such as reduction in the 
rate of myocardial infarction among patients without symp-
tomatic coronary heart disease. Moreover, decision makers 
want not only to understand the average effectiveness of a 
new drug in a population but also to identify segments of 
the population in whom it works best and is tolerated well. 
Coverage may be extended to patients in whom benefits can 
be demonstrated, and these may constitute a subgroup of 
patients already covered for the older medications. Sparse data 
will limit the number of meaningful subgroup analyses pos-
sible; however, as use of a new drug becomes more frequent, 
it becomes increasingly feasible to investigate effects in more 
subgroups (Figure 6).

Not only does small study size reduce the precision of effect 
estimates, it may also hinder one’s ability to control for con-
founding in a study involving the CE of drugs. It is well known 
that, for each variable included in a traditional multivariable 
regression outcome model, one must observe a certain number 
of outcomes in the study population.30 As a remedy, PS methods 
enable the adjustment for a large number of confounders even 
if end points are rare.31,32 In the setting of small samples (due 
to a large number of subgroups), the PS derived from the total 
population can be used to balance the subgroups if appropriate 
modeling strategies are implemented.33

Nevertheless, PSs have their limits. Confounding is likely 
to be strong in comparisons of newly marketed medications 
with established drugs, requiring adjustment of an even greater 
number of variables than PSs and other dimension-reduction 
techniques can accommodate in sparse-data settings. On the 
other hand, even if a reasonable PS model can be fitted, and 
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Figure 6  Feasibility of conducting postmarketing comparative-effectiveness 
research (CER) as a function of uptake and the number of subgroups of 
interest. In the early marketing phase, or if market uptake of a new drug is 
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even if balance is achieved in the small overlapping PS areas 
(see discussion above and Figure 4), there might be too few 
remaining comparable patients for effect estimation with any 
useful precision.

Disease-specific issues
In addition to confounding and precision, several other issues 
need to be considered that can substantially hamper phase IVA 
CER activities.

Long time to event. Even if many users of a newly marketed 
medication can be identified shortly after market access, allow-
ing the initiation of a CE study early in phase IVA, outcomes 
that require long induction periods will impede the availability 
of timely CER results. Medications for the prevention of diseases 
usually fall into this category. Even large individual RCTs on the 
efficacy of statins used for the primary prevention of coronary 
heart disease showed no effect in the first 6 months after initia-
tion of treatment. Beyond the issue of whether it is practical to 
study such delayed end points over a short time interval, there 
is another complication. The more delayed an outcome, the 
greater will be the extent of nonadherence to therapy, and this 
will need to be factored into such studies. Arguably, this may 
be one of the most important factors explaining differences in 
effect sizes between efficacy measures from highly controlled 
RCTs and studies that observe routine care and real-life adher-
ence patterns.

Long exposure-effect period. The exposure-effect period is 
the time period during which the medication exerts an effect 
on a patient’s physiology and produces measurable outcomes. 
It often starts shortly after the first tablet is taken and ends soon 
after the last is used. Other medications that may cause longer-
term disruptions of the body’s physiology may not begin to exert 
their effects for a substantial period of time after initiation or 
may have an effect that lasts far beyond the final pill. Although 
very long exposure-effect periods are exceptions, the exact form 
of the exposure-effect period generally depends on the pharma-
cokinetics and pharmacodynamics of the drug as well as on the 
outcome under study.34 In cohort studies, the clear temporality 
of “exposure, then event” makes it straightforward to vary the 
exposure-effect period and empirically assess the most likely 
underlying risk period.35

First-in-class medications. In the context of this discussion, 
we use the term “first-in-class” for medications that are true 
innovations for an indication for which no treatment exists or 
only clearly inferior alternative treatments are available. In such 
situations, the selection pressure is even higher. Who are the 
patients who are still not using the innovative agent despite its 
clear advantages? These patients may have different indications 
or much less severe disease expressions. It therefore becomes 
difficult to find active comparator groups, and nonuser com-
parison groups remain suboptimal because of the increased 
risk of uncontrollable confounding.36,37 In cases of rapid and 
almost complete market uptake of a new drug, comparisons with 
historical controls using time-trend analyses may be the most 
valid approach for estimating the added effectiveness.37,38 Such 
rapid uptake is rare but may occur when a generic medication 

is marketed after the branded drug loses its market exclusivity 
and if the generic drug is more available to patients via greatly 
reduced copayments.39

Data issues
The use of secondary data, including claims data, EMRs, and 
certain registries, provides insights into the relationship between 
treatment and health outcomes in routine care. Such data are 
continuously collected and stored electronically as part of rou-
tine care and therefore do not perturb the care system as would 
randomized trials or prospective epidemiologic studies, which 
require patient consent and follow-up monitoring. Once patients 
and providers know they are being studied, or even if they are 
merely aware of the specific study question, they may alter their 
behaviors in a way that influences patient selection, treatment 
choice, and outcome assessment.

Despite their well-recognized advantages, secondary data 
come with substantial limitations.

•	 Lag time: Some secondary data, such as EMRs, are instantly 
recorded at the time of patient care. However, extraction of 
such information often takes some time. Claims data need 
to go through an adjudication process by insurance com-
panies before they become useful for research. This process 
may take from 3 months (commercial) to a year or longer 
(some aspects of Medicare/Medicaid).40

•	 Granularity of information: In some situations, specific 
information with a high degree of granularity is required. 
In studies comparing medications, it is sometimes 
essential that we have details about the exact medication 
patients are using, including a differentiation between 
various brand and generic manufacturers of the same 
molecule, as well as the strength, quantity dispensed, 
dosage form, and route of administration. In the United 
States, this information is usually well captured with 
the 10-digit National Drug Code. However, because 
devices lack an analogous code, information on the exact 
type and build of a device is not captured in all recod-
ing systems—certainly not in claims data and rarely in 
EMR systems.

•	 Suitable outcome information: Secondary data are well 
suited for capturing major medical events that lead to hos-
pitalizations, such as stroke, myocardial infarction, surger-
ies, and serious infections. However, they are often limited 
in their ability to assess fatal events that occur outside the 
hospital, as well as functional status, cognitive status, pain, 
or quality-of-life end points that are highly relevant in 
studies of chronic conditions. Even if such information is 
routinely collected from chronically ill patients, it might 
not be collected at the appropriate time relative to medi-
cation exposure. For example, “baseline measurements” 
might already be a year old once the medication is initi-
ated, or “follow-up measurements” might be made after 
the relevant exposure-risk period has passed.
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•	 Completeness of information: Important confounder infor-
mation is often unavailable in secondary data. Information 
may be missing with respect to education and socioeco-
nomic status; lifestyle factors such as smoking and alcohol 
consumption, diet, and exercise patterns; body mass 
index; and family history of specific diseases. Even if data 
are meant to be recorded in EMRs, the information is not 
always present or the parameters may not be measured at 
an appropriate time. For example, investigators might want 
to know patients’ baseline kidney function, but such data 
are unavailable because the tests had no relevance for the 
acute treatment decision and were therefore not ordered. 
Hence, in EMR systems we might find cholesterol levels 
or blood pressure measurements for some patients but not 
all. The presence of such information may be related to the 
patient’s disease state; consequently, missing values cannot 
be considered random.41,42

Some Solutions
As we noted above, payers are increasingly interested in using 
their own data to perform CER studies to inform decision 
making in the early marketing period of a new drug. Various 
countries are also establishing national infrastructure systems 
to enable near-real-time safety monitoring of medical products 
within the routine care setting shortly after the drugs enter the 
market. These systems of networked databases, such as the FDA’s 
Sentinel System, may also serve as national resources for rapid 
generation of CE evidence.43 Many of the challenges to observa-
tional CER described above can be overcome to varying extents 
with sound methodological approaches. However, these solu-
tions are not fail-safe and can and should be implemented in 
concert with additional approaches to CER data generation and 
synthesis. Although the goal of CER—to understand the relative 
effectiveness of medical products in routine care—implies evalu-
ation before market entry, parts of the process can be initiated 
prior to approval.

In this section we describe some solutions, which we present 
in reverse chronological order with respect to when they can be 
initiated, from phase IVA to phase II. We define phase IVA as the 
early marketing phase, in which the eventual market share and 
insurance-coverage status of a newly marketed drug are still in 
flux before a more stable postmarketing phase is reached.

Sequential cohort studies
Once a drug is on the market and enters routine practice, 
observational CE monitoring can begin. The balanced sequen-
tial cohort design (Figure 7) may become a standard solution 
for working with secondary observational data that fit a broad 
range of CE and safety questions.19 The design is based on data 
collected during the process of providing care and that become 
available with a relatively short lag time, enabling near-real-time 
monitoring of effectiveness. As the drug’s time on the market 
increases, the cohort of patients exposed to the drug will expand 
and can be periodically analyzed. In our opinion, sequential 
cohort designs are the cornerstone for a proactive approach to 
ascertaining the CE of newly marketed medications.

Sequential cohorts can be defined by calendar intervals as data 
become available, such as on a monthly or quarterly basis. In 
several applications of the sequential cohort approach to active 
drug safety monitoring, we extracted new users of either the 
monitored drug or an active comparator from multiple longi-
tudinal health-care databases, in each of the calendar quarters 
from the time the monitored drug entered the market.44–46 
We applied relevant eligibility criteria, and then, within each 
quarterly period, we compared PS-matched initiators of the 
monitored drug with initiators of the comparator drug. We used 
data for the 180 days preceding each patient’s index date to iden-
tify a broad range of patient characteristics for the PS models. 
This period necessarily extended backward into the preceding 
calendar quarter. We constructed separate models among new 
users in each calendar quarter and for each database.

Each PS model included a set of predefined covariates spe-
cific to the monitored drug and outcome. We enriched the 
models with empirically identified variables using the high-
dimensional PS (hd-PS version 2) algorithm (available at http://
hdpharmacoepi.org).47 On the basis of on an extensive evaluation 
of this algorithm, we recommend variable selection based only 
on the covariate–exposure associations for drug comparisons 
wherever there is a likelihood of only a few users or outcome 
events in one or both of the treatment groups. With increasing 
numbers of users and outcome events, variable selection that 
takes the outcome into account will perform better.15,48

The result of this process is a series of PS-matched cohorts that 
can be conceptualized as “time-sliced” subcohorts nested within 
a larger open cohort study. With 1:1 matching, these quarter-
by-quarter cohorts can be easily combined with cohorts from 
subsequent quarters as new data become available, and analy-
ses can proceed without further adjustment for patient charac-
teristics, calendar time, or matching sets. It is also possible to 
consider multiple outcomes within the same matched cohort.50 
With respect to diagnostics, the balance achieved in observable 
patient characteristics can easily be demonstrated by a cross-
tabulation with treatment choice and with measures such as the 
Mahalanobis distance.49

Importantly, focusing on new users of the study drug and 
employing active comparators establish clear temporality 
among pretreatment variables that may confound the associa-
tion between the monitored product of interest and the outcome 
of interest.19,51 Balancing cohorts by pretreatment patient char-
acteristics is a safe strategy and avoids conditioning on factors 
downstream from exposure.21 The robustness and simplicity 
of this approach make it appealing for practical postmarketing 
effectiveness monitoring.

Extension of phase III and IV trials
The fastest way to collect CE data is by extending phase III trials 
such that participants who are already enrolled in preapproval 
trials can be followed into the postmarketing period. As the trial 
is completed and the drug enters the market, participants are 
sometimes asked to continue in an open-label study with free 
choice of medication. This effectively turns the trial into a non-
randomized registry study that collects detailed information on 

http://�hdpharmacoepi.org)
http://�hdpharmacoepi.org)
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treatment choice and outcomes in a defined patient population. 
A major advantage of this approach is that much of the relevant 
information has already been collected; furthermore, the exist-
ing system of patient follow-up will accelerate the generation of 
CER evidence. However, generalizability will be limited depend-
ing on the phase III trial inclusion/exclusion criteria, and all 
limitations of nonrandomized studies noted above will also 
apply to this situation.

In particular, if trial participants opt to not continue in the 
extension study, their choice may be correlated with their risk 
for the outcome. The extension may allow subjects to cross over 
in their treatment, for example, by allowing patients in the com-
parator arm access to the active treatment, and factors that influ-
ence such a decision may be difficult to measure. If the trial has 
revealed that one treatment is clearly preferable to the other, the 
few subjects who remain in the other treatment group may turn 
out to be a selective population. In this case, their value as a com-
parison group would be limited. As an example, after completion 
of the aspirin arm of the randomized Physicians’ Health Study, 
participants were offered the opportunity to receive active aspi-
rin therapy. Two years later, 99% of those originally assigned to 
the active aspirin treatment arm were requesting active aspirin, 
as compared with only 75% of those who had originally been 
assigned to placebo. The decision to request continued active 
aspirin therapy was strongly related to cardiovascular risk fac-
tors in this population.52

When confounding is deemed insurmountable with nonran-
domized studies, the only alternative is a phase IV randomized 
trial. Several alternative randomized designs are available to pro-
vide evidence on efficacy and safety of approved drugs. These 

include classic parallel-group, placebo-controlled trials to evalu-
ate efficacy in populations not previously studied or to evalu-
ate alternative end points. Examples include the JUPITER trial 
evaluating the efficacy of rosuvastatin for primary prevention 
in individuals with normal low-density lipoprotein cholesterol 
but elevated levels of high-sensitivity C-reactive protein, and 
trials of celecoxib for prevention of adenoma.53,54 Although not 
designed with active comparators, such trials provide important 
additional information on efficacy and safety and can specifically 
identify important adverse effects such as the risk of diabetes 
associated with the use of statins53 and cardiovascular complica-
tions associated with the use of celecoxib.55

In some instances, phase IV trials include active comparators, 
with the goal of evaluating either superiority or noninferiority. 
Examples include the VIGOR trial,56 designed to compare the 
gastrotoxicity of rofecoxib with that of naproxen; PROVE-IT 
TIMI 22,57 designed to evaluate the equivalence of 40 mg prav-
astatin vs. 80 mg atorvastatin daily in patients with acute coro-
nary syndrome; the SEARCH trial,58 designed to compare the 
efficacy of 20 mg vs. 80 mg simvastatin in individuals with a prior 
myocardial infarction; and the VALIANT trial,59 designed to 
evaluate superiority and/or equivalence of valsartan to captopril 
and their combination formulation in patients with myocardial 
infarction complicated by left systolic dysfunction, heart failure, 
or both. The important information on comparative efficacy and 
safety provided by these trials augments what is known about 
these drugs from premarketing clinical trials.

Although much has been learned from these classically 
designed studies, concerns remain about their costs, the time 
they take from initial conception to dissemination of results, 
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and their selective populations. As a result, there is ongoing 
discussion about the extent to which cluster-randomized trials 
or encouragement trials might broaden the generalizability of 
randomized studies at a lower cost, while preserving important 
aspects of randomization.60

More broadly, many in the field debate the extent to which 
randomized trials are generalizable to routine care and whether 
such studies should still be considered CER. A sharp distinction 
between effectiveness and efficacy is usually not helpful. It is 
important to recognize that perfect information on drug effec-
tiveness will rarely be available even years after market entry; 
we must therefore focus on determining the aspects of evidence 
generation that we are willing to forgo in favor of more impor-
tant aspects at a given point in time and based on what we think 
we already know about a new drug. This is relevant not only to 
deciding between randomized and nonrandomized designs but 
also to considering the various trade-offs at any decision point in 
the design of a CE study. We noted above that increased valid-
ity often comes at the price of reduced generalizability, even in 
observational studies using secondary data.14,18 In our opinion, 
the aspects that should be assigned the most weight when con-
sidering trade-offs are internal validity of findings (valid for the 
population studied), selection of end points important to both 
patients and providers, and use of clinically relevant comparison 
groups. Other important aspects include broader generalization, 
timeliness of findings, costs, and specific subgroup analyses.

Blanket statements such as “We need evidence from all types 
of designs available to CER” are not false.9 However, it is more 
important for stakeholders to be aware that all choices between 
research methodologies to generate CER evidence—including 
choice of study design, type of analysis, data source, comparison 
group, and end points—come with trade-offs regarding valid-
ity, precision, timeliness, feasibility, generalizability, clinical rel-
evance, and other attributes. As investigators, we need to aim for 
transparency regarding the trade-offs we make and our reasons 
for making them, even if we disagree about which trade-offs are 
more appropriate than others.

Indirect comparison of RCTs
At the time point when medications enter the market, data will 
already be available for the small number of efficacy trials that 
supported the application for regulatory approval. Most pre-
marketing clinical trials use placebo controls, although studies 
relating to infection control, cancer, and select other conditions 
may employ active comparators. Over the past decade, of the 
total number of approval application packages for drugs that 
subsequently obtained FDA approval, 50% included a trial with 
an active comparator.61 However, it remains unclear whether the 
comparator used and the evidence generated by those studies are 
relevant for routine care and therefore of value in making pre-
scribing and coverage decisions. If no active comparator studies 
are available, or an unsuitable active comparator was used, then 
indirect comparisons may provide some further insight.

The basic aim of indirect comparisons is to identify a reference 
group common to a group of trials (e.g., a placebo control or a 
uniform active comparator) against which the efficacy of each 

drug of interest was assessed. Using information about the effi-
cacy of drug A relative to a reference drug, and of drug B relative 
to the reference drug, we can infer the efficacy of A relative to 
B. However, the randomization that balanced each individual 
trial no longer holds because the composition of the placebo 
group in one trial might be quite different from that in another. 
This turns an indirect comparison into an epidemiological study, 
which requires confounding adjustment according to the jointly 
observed patient characteristics to stand in place of exhaustive 
risk factor balancing.62 In particular, the assumption that the 
relative treatment effect remains constant across populations 
with possibly widely varying absolute risks is a very strong one, 
and possibly unjustifiable.

Overall, indirect comparisons have been shown to produce 
valid results if applied correctly.63 Indirect comparisons can 
be conducted more expeditiously than de novo head-to-head 
randomized trials, and indirect comparisons using preapproval 
trials can be completed even before market authorization. One 
recent example is a comparison of dabigatran and rivaroxa-
ban as agents to prevent venous thromboembolism in patients 
after knee or hip replacement.64 Dabigatran received market-
ing authorization from the European Medicines Agency for 
the prevention of venous thromboembolism as early as March 
2008 but was not approved in the United States until October 
2010. The indirect comparison was completed on 28 September 
2009, before any head-to-head trial was completed. Enoxaparin 
was used as the common reference group because it had been 
compared with dabigatran in three trials and with rivaroxaban 
in six. Rivaroxaban was found to be more effective than either 
enoxaparin or dabigatran.

Indirect comparisons can be extended to networks of rand-
omized trials as more evidence becomes available,65,66 although 
they are often hindered by the lack of common reference popula-
tions among preapproval trials or by the lack of comparability 
in patient inclusion and end-point definitions of various trials. 
Furthermore, although indirect comparisons are, in practice, 
based almost exclusively on randomized efficacy trials, in theory 
this is not necessary. This is more a consequence of the available 
data than of the intention. As with all of our proposed solutions, 
trade-offs must be made between generalizability to routine care 
and the time until evidence becomes available.

Modeling and trial simulation
Pharmacokinetic and pharmacodynamic modeling has long 
guided clinical trial design, dose selection, and development 
strategy to increase chances of identifying efficacious thera-
peutic options and moving them into experimental testing.67,68 
Modeling techniques have become increasingly sophisticated,69 
and their use to enhance sponsors’ ability to predict desired 
outcomes in prospective trials may help accelerate drug devel-
opment and prioritize product development. However, such 
modeling does not fully simulate a virtual randomized trial to 
assess the existence and magnitude of an effect.

Computer modeling of human physiology and the effects of 
biologically active molecules can be more powerful than phar-
macokinetic and pharmacodynamic approaches. Simulation 
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software tools such as Archimedes70 mathematically represent 
physiological pathways and the effects of multiple diseases, tests, 
and treatments, using hundreds of differential equations. These 
models even include parameters on health-care practice and 
administrative events so that the effectiveness of intervention 
in routine care can be estimated. The flexibility of the system 
allows testing of a wide variety of interventions, including mul-
tiple simultaneous interventions, as well as a large set of clinically 
meaningful outcomes, including clinical outcomes such as myo-
cardial infarctions and quality-adjusted life years. In numerous 
validation studies comparing the Archimedes simulations against 
the findings of randomized trials, the developers of Archimedes 
claim a correlation in effect estimates of 0.96.71 More independ-
ent evaluations may be necessary, although the existing evidence 
is striking. Such powerful simulation studies may be the very first 
evidence generated on the CE of drugs, even before clinical trials 
are completed.72 Some health plans, such as Kaiser Permanente, 
already use Archimedes to inform treatment-guideline and cov-
erage decisions in the early marketing phase.73

Other modeling approaches are based on extrapolating find-
ings from selected studies to populations that were not included 

or to long-term effects that were not observable. Such models 
may also be useful when the effectiveness of multiple clinical 
options needs to be compared and when it is difficult to conduct 
a single large study.74

Implications For Drug Development
Mastering the methods described in the previous sections will 
become one of the most critical preconditions for the success of 
pharmaceutical companies in preparing their development and 
market access capability against the backdrop of the shifting reg-
ulatory and reimbursement paradigm. Of particular relevance 
for the industry, this shift is driven by three major changes and 
their interplay:

1.	 The increasing influence of payers on prescribing decisions 
by the individual physician and on driving new, real-world 
evidence standards to which reimbursement/pricing and 
utilization will be tied. This trend carries the risk of slowing 
the process of bringing new drugs to market. This risk and its 
consequences can be best mitigated through the systematic 
development of robust CE data, given that initial indications 
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and coverage decisions are regularly reviewed and modified 
based on accumulating postmarketing evidence about the 
added benefits and/or reduced risks of new medications.

2.	 Increasingly strong coordination between payers and regu-
latory agencies, particularly regarding evidence standards. 
For example, the FDA’s Mini-Sentinel system involves many 
of the most relevant U.S. payer organizations as data part-
ners. This development reinforces the impact of payers and, 
through regulatory mechanisms such as conditional approval 
decisions and restriction of the initial label to small patient 
populations, puts pharmaceutical companies at risk of facing 
slowdowns in future market penetration or strategic expan-
sion of new medications into new segments of the popula-
tion. High penetration and expansion can still be achieved 
with early and robust CE data paired with proactive risk-
minimization strategies.

3.	 An accelerating trend toward CE evidence generation by 
third parties, driven largely by insurers and provider organi-
zations leveraging the wealth of data from their longitudinal 
claims or EMR systems, as well as academic groups ben-
efiting from increased governmental funding for CER. This 
trend will reduce pharmaceutical companies’ control over 
the flow of evidence regarding their own products and chal-
lenge them to develop and validate postmarketing evidence 
faster than any third party.

In an effort to mitigate the risks posed by these changes and 
transform them into a source of sustainable competitive advan-
tage, we present the solutions discussed above as specific rec-
ommendations in relation to the typical medication life cycle 
(Figure 8). We also recommend that pharmaceutical companies 
embark on two mutually reinforcing strategic moves:

1.	 First, to prepare their organizations to drive the transition 
from the traditional regulatory “event” model—in which a 
“one-time” definitive and appropriately broad approval and 
reimbursement decision was made by regulators, payers, 
and other reimbursement stakeholders based on placebo-
controlled clinical trial data—toward a “process” model, in 
which reimbursement stakeholders condition their initial 
approval and reimbursement decision on the continued 
development of CE and other scientific evidence in situ-
ations in which significant uncertainty around the health 
outcomes of medications remains at the time of marketing 
authorization.

2.	 Second, to build a system of capabilities supporting the 
seamless access, integration, and analytics of routine-care 
data before and after market access and to align such a sys-
tem with existing procedures for generating and assessing 
clinical trial data. This may require new types of integrated 
research alliances between pharmaceutical manufacturers 
and payers.

A major step toward building such a supporting system of 
capabilities and the key to strategic use of real-world data is to 
transform CER from an unreliable, ad hoc approach to a robust 

science that minimizes bias and is scalable across the needs 
of clinicians, regulators, payers, and the industry. A strategy 
exploiting the various solutions described in this article, either 
simultaneously or sequentially (Figure 8), may open the door 
to truly strategic use of CER.

Pharmaceutical companies could begin with the specific step 
of determining what an effective system of capabilities for gen-
erating and using relevant real-world data looks like, followed 
by conscious investment in building it into a major driver of 
competitive advantage. Next, investment in demonstration 
projects using the methods described in this article would be 
a pragmatic approach to achieving early access to all relevant 
data and capabilities.

Conclusion
Establishing the CE of newly marketed medications is challeng-
ing but crucial: during the critical early postmarketing period, 
decisions are made regarding a drug’s added therapeutic value 
for patients. These decisions, although often made with limited 
CER evidence, serve as the basis for new utilization patterns that 
are quickly established but difficult to change. Putting the wrong 
pattern in place sets in motion the attendant consequences of 
health and safety for patients and of cost for health-care provid-
ers. Robust CE results, produced as quickly as possible, have 
enormous importance for patients and payers.

No single approach will fulfill all possible needs for CE infor-
mation shortly after a drug has entered the market. We propose 
a mix of approaches that includes sequential cohort monitoring 
with secondary health-care data, phase III RCT spillover studies 
and phase IV trials, indirect comparisons of placebo-controlled 
trials, and modeling and simulating virtual trials.

The issues we discuss here are highly relevant for drug devel-
opment. It is increasingly important to effectively integrate infor-
mation from a variety of sources, multiple partners, and different 
development stages to produce a successful CER portfolio in the 
early marketing period. However, this may call for creation of 
integrated CER analytics capabilities within companies.

With the emergence and integration of CER data throughout 
the development process, it is vital for all stakeholders to under-
stand that the various research methodologies to generate CER 
evidence—including choice of study design, type of analysis, 
data source, comparison group, and end points—have trade-
offs with respect to validity, precision, timeliness, feasibility, 
generalizability, clinical relevance, and other aspects. We need 
to aim for transparency regarding the trade-offs we make and 
why we make them, even if we disagree about their relevance 
and value.
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