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Using high-dimensional propensity scores to automate confounding
control in a distributed medical product safety surveillance system
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ABSTRACT
Distributed medical product safety monitoring systems such as the Sentinel System, to be developed as a part of Food and Drug Adminis-
tration’s Sentinel Initiative, will require automation of large parts of the safety evaluation process to achieve the necessary speed and scale at
reasonable cost without sacrificing validity. Although certain functions will require investigator intervention, confounding control is one area
that can largely be automated. The high-dimensional propensity score (hd-PS) algorithm is one option for automated confounding control
in longitudinal healthcare databases. In this article, we discuss the use of hd-PS for automating confounding control in sequential database
cohort studies, as applied to safety monitoring systems. In particular, we discuss the robustness of the covariate selection process, the poten-
tial for over- or under-selection of variables including the possibilities of M-bias and Z-bias, the computation requirements, the practical con-
siderations in a federated database network, and the cases where automated confounding adjustment may not function optimally. We also
outline recent improvements to the algorithm and show how the algorithm has performed in several published studies. We conclude that
despite certain limitations, hd-PS offers substantial advantages over non-automated alternatives in active product safety monitoring systems.
Copyright © 2012 John Wiley & Sons, Ltd.

key words—propensity scores; confounding factors (epidemiology); multicenter study (publication type); epidemiological methods

INTRODUCTION

Distributed safety monitoring systems, such as the
Sentinel System to be developed as a part of Food
and Drug Administration’s Sentinel Initiative, will
benefit from automating large parts of today’s pharma-
coepidemiology study process and will require auto-
mation that is based on sound design principles and
careful quality control, and built to ensure validity
while providing speed and scale. Speed is required
for fast evaluation and identification of safety signals;
scale is needed to manage both the number of patients
under observation and the number of potential safety
signals the system needs to be able to evaluate. In
this setting, the intelligence that investigators normally
apply study-by-study needs to be encapsulated in
study frameworks and algorithms that can be applied
reliably and in a largely hands-off fashion.

The choice of an appropriate study design can
largely be driven by attributes of the safety question
and associated appropriate designs. Self-controlled
designs, which minimize confounding by comparing
a patient with himself or herself, are well suited to
studies of acute onset events such as allergic reactions
or situations of transient exposures.1 However, in most
monitoring scenarios, cohort designs and their associ-
ated sampling strategies will be better suited. A success-
ful safety cohort study will use an incident user design2

with well-defined covariate assessment and exposure
definition windows, covariate balancing, and other
familiar components.3 An important part of cohort-type
designs is choosing a suitable comparison group. This
choice is key to study validity and will need substantial
investigator input on a case-by-case basis.
In this article, we have made the following assump-

tions: (i) we will use a cohort-type design with the
understanding self-controlled designs are not applica-
ble to the monitoring setting at hand;4 (ii) for practical
reasons, data updates occur at predefined, periodic
time points (e.g. every 3months) and the cohort is
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sequentially expanded in size; (iii) a drug with a simi-
lar indication as the study drug has been chosen as a
clinically-meaningful active comparator; and (iv) the
study data are longitudinal insurance claims stored
across a distributed database network.
Cohort studies of treatment effects require control

for between-person confounding. Common methods
to minimize confounding bias in non-randomized
cohort include inducing homogeneity in patient char-
acteristics by restriction of the patient population,
stratification of treatment effects by subgroups, match-
ing patients on key factors such as age, or adjusting for
measured confounders with regression. Propensity
scores and disease risk scores extend these basic
concepts by aggregating a number of confounders into
a single summary measure.
Any control of confounding begins with the identifi-

cation of potential confounding factors and the correct
selection of the covariates that influence the use of
study medications and the outcome under evaluation.
Traditionally, this is done through the application of
subject matter expertise or through a more formal pro-
cess such as directed acyclic graphs.5 Covariates may
be created (identified and measured) specifically for
the study, or in pharmacoepidemiological database
studies, covariate definitions may already exist in a
standing library. However, this traditional approach
does not scale well to either the large number of
covariates necessary for reasonable confounding
control in pharmacoepidemiological database studies6

nor to the number of monitoring projects envisioned
for an active medical product surveillance system. A
standing library of covariate definitions, even one based
on a common data model, may not include all the im-
portant risk factors for the present study and may require
all participating data partners to subscribe to a ‘lowest
common denominator’ of available data elements. The
fact that drug user populations shift over time will make
it evenmore cumbersome to pick a single set of ‘correct’
variables that are applicable over time.
The ideal automated procedure for covariate selec-

tion would create and select pre-exposure covariates
and, by controlling for these covariates, minimize
residual bias as well as or better than a team of inves-
tigators would be able to. This process would enable
the valid study of medical product-outcome associa-
tions with a minimum of investigator intervention
and thus make monitoring fast and scalable.
In this article, we investigate whether one proce-

dure, the high-dimensional propensity score (hd-PS)
algorithm, could serve as an automated mechanism
for confounding adjustment for the Sentinel System
and describe the strengths and limitations of hd-PS in

such a setting. In particular, we discuss the robustness
of the covariate selection process, the computation re-
quired, the potential for over- or under-selection of
variables, the practical considerations in a federated
database network, and the cases where automated con-
founding adjustment may not function optimally.

THE HD-PS ALGORITHM

In earlier work,6,7 we described the hd-PS algorithm,
an automated covariate creation, selection, and con-
founding adjustment process. It has now been applied
to several pharmacoepidemiology studies.8–13 Moving
left to right across each row of Table 1 shows what we
consider to be evidence of the method’s success:
across a range of studies, we see a largely monotonic
progression of the point estimate as additional levels
of confounding control are applied. We observed that
this progression may move toward a null finding, away
from the null, or even to and beyond the null depend-
ing on the nature of the residual confounding. For ex-
ample, in the first row, the unadjusted point estimate
indicate that Cox-2 inhibitors (coxibs) are associated
with a 9% increase of incidence of gastrointestinal
bleed as compared with non-selective non-steroidal
anti-inflammatory drugs (ns-NSAIDs). Randomized
trials suggested a lowering of risk by approximately
20% among healthy patients,14,15 so we consider the
unadjusted value, observed among patients undergo-
ing routine care, to be upwardly biased. Adjusting
for age, sex, and other basic variables moves the point
estimate downward to a 1% increase in risk. Further
adjustment by other investigator-specified variables
moves the estimate further downward, to a 6% relative
risk reduction. Applying hd-PS moves the estimate yet
further downward, to a 12% to 13% relative risk
reduction observed in our routine care population.
Since the algorithm’s original publication, we have

studied and made modifications to the procedure both to
handle small study sizes6 and to greatly improve speed.16

APPLYING THE HD-PS ALGORITHM IN THE
SENTINEL SYSTEM

The hd-PS algorithm creates and prioritizes potential
confounders of the medical product-outcome asso-
ciation under study.7 In its most common configura-
tion, it takes as input the recorded history of medical
encounters—the presence of diagnostic codes, proce-
dure codes, hospitalizations, and medication fills—
experienced by the patient before exposure. The
algorithm creates covariates from each of these
events—coded for presence or absence of the event
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and, when present, for frequency of the event’s recur-
rence—and assesses these new covariates for their
association with both study exposure and outcome.
Using Bross’ formula for confounding bias for dichot-
omous variables,17 it then ranks the group of covari-
ates for their potential to bias the association under
study, and by default will select the top 500 of these
covariates that seem most likely to add bias. It enters
these variables into an exposure propensity score
model, and after estimating the propensity score, the
hd-PS algorithm initiates a fixed-ratio matching pro-
cess that creates a cohort in which patients treated with
the exposure and referent drugs are balanced with
respect to measured covariates. Although matching
may implicitly exclude patients who are in the tails
of the propensity score distributions,18 it will estimate
the treatment effect only among patients who could
plausibly have received either of the drugs under
study. In randomized trial terms, these are the patients
for whom there was equipoise.
When using hd-PS, we recommend a set of basic

design principles. To ensure clear temporality and to
avoid other biases, we apply an incident user cohort
design3 in which exposure is required to be preceded
by a term of non-use of the study drugs, thereby
excluding prevalent users. In most cases, exposure
should be contrasted with an active comparator group
with the same indication; for example, users of coxibs
would be compared with users of ns-NSAIDs rather
than non-users.2 All covariates that are assessed must
be recorded within a defined period before the expo-
sure date, often 180 or 365 days. Outcome is assessed
during a limited follow-up time with censoring at
the time of treatment discontinuation or treatment
group switching. These design criteria, while not
the only way to conduct a successful study, ensure that
key epidemiological principles are met: covariates
are measured before exposure, incident users are
compared ‘apples to apples’ to other incident users,
and exposure misclassification during follow-up is
limited.
With this in place, hd-PS can identify and select

covariates, estimate a propensity score, and match
patients within the cohort, all without user interven-
tion. Applied on a periodic basis over time and at each
participating data provider’s facility, the result is a
series of cohorts matched within each provider’s
patient base19 and matched with respect to the best
available covariate information at the time of the
patients’ exposures. As exposure or outcome fre-
quency grows or as the composition of the population
using a drug changes over time, so too will the
covariates selected to optimally address confounding.

Although this is contrary to the principle of choosing
covariates based on knowledge of the biologic pro-
cesses at work, it is an effective approach in secondary
data like those that will be used within the Sentinel
System. It is also pragmatic, as it addresses the issue
of changing drug usage patterns over time and thus
ensures that maximal validity is achieved at each
point in time and in each data environment, even
across the heterogeneous data elements available in a
federated system.
As we noted earlier, matching the cohorts imposes

an implicit and useful restriction criterion: patients
are unmatched and thus excluded if there are ex-
posed patients for whom no exchangeable referent
patient exists, or vice versa. Although analytically
the results are similar to a trimmed propensity score
approach,18 a fixed-ratio matching process also pro-
vides other beneficial side effects, such as a cohort
that should be balanced with respect to all measured
confounders and thus does not require further con-
founding control in the outcome analysis. An inspec-
tion of the cohort stratified by exposure category and
confounders will indicate, either visually or through
the automated application of measure like the
Mahalanobis distance,20,21 residual imbalances that
need to be addressed. The benefits of the simplicity
of this balance verification should not to be underes-
timated in a system that aspires to automate as many
aspects as possible but which still allows for rapid
quality checks of the underlying epidemiology.

DISCUSSION OF THE STRENGTHS AND
LIMITATIONS OF HD-PS

For decades, epidemiologists have been taught that
each confounding variable’s relationship with the
exposure and outcome must be fully understood
on biological and medical-sociological grounds.
Unsurprisingly, a healthy skepticism is a common
first reaction to an automated confounding adjust-
ment approach. However, context is important: in
the case of a safety surveillance system based on
secondary data, our biggest concern is unmeasured
confounders, as we are not in control of the data
collection process and might not know all rele-
vant confounders and thus are prevented from
defining necessary confounding variables from first
principles.
In this section, we present several of hd-PS’s

performance characteristics as well as potential
threats to validity because of the use of the hd-PS
algorithm.
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General issues with selection of variables for
confounding adjustment

An automated variable selection technique can fail in
several ways: it can select too few covariates, too many
covariates, and/or can select the wrong covariates.
With respect to the optimal number of covariates to

be selected, we recently performed extensive simula-
tion studies in which we sought to determine how
many variables are required for maximal confounding
adjustment achievable in a specific data source for
a specific exposure-outcome pair.6 We examined
hd-PS in both common and small study circumstances
and determined that 350 to 400 variables are generally
sufficient. A additional variables provided a little
change in point estimate, as the algorithm first
selects the variables likely to cause the most bias.
Selecting additional variables would likely do no
harm, but selecting fewer is likely to lead to under-
adjustment. Indeed, in a propensity score, there is little
harm to including too many variables, as long as
those variables are either confounders, proxies for
confounders, or are predictors of the outcome.22

Further, because the parameters of a propensity score
model will not be interpreted, and the score will not
be generalized to other data sets, there is no need for
concern about overfitting.23,24 Naturally, there will be
a strong correlation among certain measures (e.g.
ordering of a cholesterol test, diagnosis of hypercho-
lesterolemia, statin drug use, and increased service
usage intensity), but while this correlation would af-
fect the interpretation of the elements of the propensity
score model, it will not reduce the score’s ability to
adjust for confounding.
Selection of the correct variables is nevertheless

important. Although the Bross formula provides a rea-
sonable way to quantify the potential univariate bias if
we would fail to adjust for a particular variable, it does
not account for more complex situations. In particular,
certain variables such as colliders25,26 may seem ana-
lytically to be confounders, but adjusting for them
can increase bias.5

Two relevant kinds of collider bias have been noted in
the literature:M-bias, named for the shape of the directed
acyclic graph that characterizes it,26 and Z-bias, named
because the bias comes from the inclusion of an instru-
mental variable (often notated Z) in the analysis; Z-bias
is, also called ‘residual confounding amplification’.27,28

Variable selection issue: potential for M- and Z-bias

M-bias (Figure 1) occurs from conditioning on an
apparent confounder (C), which is actually a collider.
C must be associated with two types of unmeasured

confounders—a U1 that is associated only with expo-
sure and a U2 that is associated only with the out-
come—but also not be directly associated with either
exposure or outcome. Brookhart et al.28 gave this
hypothetical example: in a study of anti-depressants’
effect on incidence of lung cancer, assume that U1 is
depression status (affecting anti-depressant use but
not lung cancer) and U2 is smoking history (affecting
lung cancer but not anti-depressant use). By condition-
ing on cardiovascular disease (C), an association is
induced between anti-depressants and lung cancer via
the M-shaped pathway via depression, cardiovascular
disease, and smoking.5

Although M-bias has been shown theoretically, in
practice, its effect seems to be minimal. Liu et al.29

showed that the bias, even when detected, was gener-
ally small (<5%, based on strength of residual con-
founding) and also pointed out that finding a scenario
like this was rather difficult, especially in an inci-
dent user design. Moreover, outside the tidiness of
a simulation environment, in other circumstances
(Figure 2), the variable C may be a collider on one path
(U1!C!U2) but a proxy for a confounder (U3)
on another. In this case, whether to adjust for C
comes down to whether doing so will do more good
than harm. It seems that in most pharmacoepidemiol-
ogy situations, we are unlikely to see true M-bias of
any relative magnitude,26 and if we do, experience
tells us that the complexity of the underlying biolog-
ical and medical-sociological structures will likely

U1 U2

C

X Y

Figure 1. Example of M-bias

U1

X Y

U2

C

U3

Figure 2. Example of M-bias plus confounding bias
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yield a complicated situation that mixes confounding
and colliding. In most of these circumstances, the
reduction in bias from adjusting for the confounding
should far offset any increase in bias because of con-
ditioning on a collider.26

Z-bias refers to the bias caused by adjusting for an
instrumental variable in studies that also have unmea-
sured confounding.27,28,30,31 An instrument is a vari-
able that is associated only with the exposure and
not with outcome (other than through a pathway via
exposure) and can serve to adjust for unmeasured con-
founding if handled with the proper analytic tools.32–34

In a study of statins versus glaucoma drugs on the
incidence of myocardial infarction, a variable like
prior glaucoma diagnosis will be strongly predictive
of whether a patient receives a glaucoma drug but will
have little effect on the outcome.
Myers et al.30 undertook a simulation study to quan-

tify the effects of Z-bias in common pharmacoepide-
miology settings. They found that Z-bias, although
measureable, was only of substantial magnitude in
cases of very strong unmeasured confounding, and
even in these cases, the strongest Z-bias we observed
represented less than 5% of the total study bias. From
this simulation analysis, they concluded that Z-bias
was indeed a measureable phenomenon but was small
in degree compared with studies’ true threat to valid-
ity: unmeasured confounding. They further conclude
that when in doubt about whether a covariate is a con-
founder or an instrument, adjusting for the covariate
will generally reduce net bias.
The first line of defense against M- or Z-bias is to

reduce unmeasured confounding; by doing so, the
effect of these biases will be minimized or eliminated.
If unmeasured confounding remains after applying
hd-PS or another confounding reduction technique,
some effect of M- and Z-bias may be unavoidable: in
the end, it is impossible to distinguish a confounder
from a collider through inspection of data. However,
in non-randomized pharmacoepidemiology, confound-
ing bias is generally considered to be the greatest threat
to study validity; any confounding bias will likely be of
greater magnitude than collider bias. An automated
confounding adjustment system that selects a large
number of covariates, even with somewhat imperfect
variable selection, should improve study validity far
more than it will harm it (Figure 3).

Variable selection issue: selection with respect to outcome

Rubin42,45 advocates that variables in a propensity
score should be selected on the basis of whether
the variables balance the patients between exposure

groups, but not on whether they are independent risk
factors for outcome. Although we agree with this
approach in principle, it does assume that investiga-
tors know and measure all [true confounders a priori].
A principal innovation of hd-PS is to automatically
identify a large number of covariates and prioritize
them according to their potential to be confounders.
Although this prioritization requires reference to
the study outcome, we view hd-PS as a pragmatic
approach to Rubin’s general principle of using propen-
sity scores to ultimately improve study validity.

Use of hd-PSwith few exposed patients or outcome events

In a distributed Sentinel-type system, issues stemming
from small cohort size can arise in multiple ways: it is
possible that some contributing sites will be small, or
that sites, although large, will have low exposure fre-
quency. Infrequent exposure may be common in the
setting of active surveillance of drugs that are new to
market, as there may be a limited number of early
users.35

With few exposed patients, propensity scores are dif-
ficult to estimate. Alternatives exist—high-dimensional
disease risk scores36 can be used in place—but in an au-
tomated system, there may be little ability to implement
alternative approaches. In cases of few exposed patients
and even fewer outcome events, several pragmatic
approaches can be contemplated: one can wait until suf-
ficient exposures accumulate, one can pool sites to esti-
mate propensity scores (if data sharing is allowed), one
can estimate a propensity score with a minimal number
of variables and thus lower confidence in the resulting
point estimate accordingly, or one can estimate a disease
risk score from historical data and use that until enough
exposed patients are observed.
With respect to few outcome events, we have shown

that hd-PS works well with approximately 150 or more
outcome events.6 With between 25 and 150 outcome
events, we recommend enabling the new ‘zero cell

Figure 3. In most realistic scenarios, with increasing covariate adjustment,
net bias should be reduced even in the theoretical presence of M- or Z-bias
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correction’ or ‘confounder-exposure assessment only’
options provided in the latest versions of the hd-PS
algorithm.6,36 Zero cell correction adds 0.1 to each cell
of each variable-outcome 2 � 2 table and thereby
enables estimation of all variables’ potential bias.
Alternatively, the confounder-exposure assessment
mode implements the outcome-independent Rubin
approach and judges potential for bias only via the
variables’ differential prevalence in the exposed and
unexposed groups. With fewer than 25 events, we
have observed that hd-PS generally works as well as
investigator’s specification of covariates, but may not
offer any improvement beyond that.6

Automated generation of health utilization variables

Health service intensity variables such as number of
office visits or number of medications used are impor-
tant proxies for health state:37 sicker patients have more
healthcare encounters and more healthcare encounters
lead to more opportunities that health status will be
recorded. Because these variables are so frequently
crucial confounders, the hd-PS algorithm includes
automated characterization of each patient’s service
usage.6,36 Early tests have shown that hd-PS’s genera-
tion of health service intensity variables is equivalent to
the investigator-specification of these variables, to
within 1% of the resulting point estimate.

Additional challenges in a distributed database setting

The distributed data setting of the Sentinel System
allows for the contribution of many participating sites
with varying levels of available information, but the
robust confounding control needed in most safety
studies introduces certain logistical and analytic
challenges. For reasons of patient and organizational
privacy, a central site may not be able to receive
individual-level data. A better solution may be for
each site to estimate an hd-PS and then share just
de-identified information—anonymous identifier, ex-
posure status, outcome status, estimated hd-PS, and
possibly other non-identifying information to be used
for subgroup analyses.38–40 The cost of this approach
is a set of limitations: each participating site must
have the analytic capability to run preprogrammed
code for hd-PS and relevant diagnostics, including
the generation of a table of the patients’ characteris-
tics as stratified by treatment group, and any sub-
group analyses must be specified a priori. In studies
to date, including a large-scale, multisite investiga-
tion that made extensive use of propensity scores,25

the benefit of maximal confounding adjustment and

thus maximal study validity has outweighed the lim-
itations imposed.
In a distributed setting with heterogeneous data ele-

ments, hd-PS also offers two further advantages. First,
the algorithm is largely agnostic to data structure and
coding schemes: hd-PS has worked without modifica-
tion or transformation to a common data model on data
from Medicare, commercial US insurers, British
Columbia’s provincial insurance programs, and the
UK’s THIN and GPRD research databases. Second,
hd-PS is designed to take maximal advantage of data
available from each site; if one site has detailed, med-
ical record-based information but another has just
basic claims, hd-PS will adjust maximally in each site
rather than revert to a lowest common denominator
of available information. If sites have substantially
differing point estimates, we have proposed methods
to determine whether the variability comes from het-
erogeneous patient populations or from insufficient
confounding adjustment in sites with less information
stored in their databases.39

Requirements for computing time

The current version of hd-PS takes advantage of the
ability of SAS 9.2 to transparently call Java programs
from within data steps, and is released as a SAS macro
with an embedded Java component. The hybrid SAS/
Java approach allows for substantially improved per-
formance versus a macro implemented purely in the
SAS macro language. This performance is key for
subgroup analyses, sensitivity analyses, or other situa-
tions in which hd-PS must be run multiple times. We
have also implemented a version of hd-PS for high-
end database appliances; with such an appliance, com-
puting time is reduced to approximately 30 seconds.
This version is targeted for large data sets, multiple
re-analyses, or other situations in which speed and
scale are crucial.

Diagnostics and presentation of results

Automated variable selection algorithms can seem to be
something of a ‘black box’; to counter this, we have cre-
ated an extensiveWeb site (http://www.hdpharmacoepi.
org) for making hd-PS’s activities transparent. If the
user requests, the algorithm can automatically upload
and archive aggregated diagnostic information and
anonymous summary data that is similar to the typical
cohort description published in research articles. Once
it is uploaded, a public link can be generated for study
investigators and external reviewers to interactively
browse the variables selected, review Z-bias screening
reports, check other diagnostics, and compare the
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variables selected across studies with similar exposures
and outcomes. Note that though the site can display
extensive information about each analysis, no individual
patient data is ever in any way transmitted, visible, or
inferable.

CONCLUSION

Active safety monitoring systems will require certain
decisions to be made by investigators; at the same
time, meaningful scalability will require as many study
elements as possible to be automated. We provide
reasons and some evidence that covariate creation
and selection can be accomplished effectively with
an automated process such as hd-PS. We recognize
the trade-offs—including variables that may be chosen
because of observed associations rather than from sub-
ject matter expertise, or variables that may be included
unnecessarily or even incorrectly—but in studies to date,
hd-PS has made choices that provide equal or better
confounding adjustment as compared to investigator-
driven covariate selection, and we have no evidence that
‘over-adjustments’ resulting in M-bias and Z-bias are
threats to validity in realistic safety surveillance settings.
In general, settings of very few exposed combined with
rare outcomes will remain challenging, as will settings
with very strong unmeasured confounding.
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KEY POINTS
• To reach full scale, the Sentinel System and other
drug safety surveillance systems will require auto-
mation of large parts of the evaluation process.

• We present the high-dimensional propensity
score as one option for automating confounding
control in safety surveillance evaluations.

• We discuss covariate selection, potential for
collider bias, practical considerations, and other
challenges and solutions.

• We conclude that despite certain limitations, hd-PS
offers substantial advantages over non-automated
alternatives in active product safety monitoring
systems.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

The authors acknowledge the members of the Mini-
Sentinel Methods Development Signal Evaluation
Workgroup for their insights on collier bias and other
variable selection challenges.

REFERENCES

1. Maclure M. The case-crossover design: a method for studying transient effects
on the risk of acute events. Am J Epidemiol 1991; 133(2): 144–153.

2. Ray WA. Evaluating medication effects outside of clinical trials: new-user
designs. Am J Epidemiol 2003; 158(9): 915–920.

3. Schneeweiss S. A basic study design for expedited safety signal evaluation
based on electronic healthcare data. Pharmacoepidemiol Drug Saf 2010;
19(8): 858–868.

4. When Should Multi-Site Electronic Healthcare Database Surveillance Systems
Use Case-Based Designs For Medical Product Safety Monitoring?: Working
Group on Case-Based Approaches for the Methods Core of the Mini-Sentinel
Initiative; 2011.

5. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research.
Epidemiology 1999; 10(1): 37–48.

6. Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S. Covariate selection in
high-dimensional propensity score analyses of treatment effects in small samples.
Am J Epidemiol 2011; 173(12): 1404–1413.

7. Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-
dimensional propensity score adjustment in studies of treatment effects using
health care claims data. Epidemiology 2009; 20(4): 512–522.

8. Rassen JA, Choudhry NK, Avorn J, Schneeweiss S. Cardiovascular outcomes
and mortality in patients using clopidogrel with proton pump inhibitors after per-
cutaneous coronary intervention or acute coronary syndrome. Circulation 2009;
120(23): 2322–2329.

9. Schneeweiss S, Patrick AR, Solomon D, et al. The comparative safety of antide-
pressant agents in children regarding suicide attempts and suicides. Pediatrics
2010; 125(5): 876–888.

10. Schneeweiss S, Patrick AR, Solomon D, et al. Variation in the risk of suicide
attempts and completed suicides by antidepressant agent in adults: A propensity
score-adjusted analysis of 9 years of data. Arch Gen Psych 2010; 67(5): 497–506.

j. a. rassen and s. schneeweiss48

Copyright © 2012 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2012; 21(S1): 41–49
DOI: 10.1002/pds



11. Patorno E, Bohn RL, Wahl PM, et al. Anticonvulsant medications and the risk of
suicide, attempted suicide, or violent death. JAMA 2010; 303(14): 1401–1409.

12. Huybrechts KF, Rothman KJ, Silliman RA, Brookhart MA, Schneeweiss S. Risk
of Death and Hospitalization for Major Medical Events after Initiation of Psycho-
tropic Medications in Older Adults Admitted to Nursing Homes. Can Med Assoc
J. 2011; 183: E411–E419.

13. Toh S, García Rodríguez LA, Hernan MA. Confounding adjustment via a semi-
automated high-dimensional propensity score algorithm: an application to elec-
tronic medical records. Pharamcoepidemiol Drug Saf 2011; 20: 849–857.

14. Bombardier C, Laine L, Reicin A, et al. Comparison of upper gastrointestinal
toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR
Study Group. N Engl J Med 2000; 343(21): 1520–1528, 1522 p following 1528.

15. Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with cele-
coxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid
arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term
Arthritis Safety Study. JAMA 2000; 284(10): 1247–1255.

16. Rassen JA, Doherty M, Huang W, Schneeweiss S. HD Pharamcoepi Web Site.
2011; http://www.hdpharmacoepi.org

17. Bross IDJ. Spurious effects from an extraneous variable. J Chronic Dis 1966;
19(637–47).

18. Sturmer T, Rothman KJ, Avorn J, Glynn RJ. Treatment effects in the presence of
unmeasured confounding: dealing with observations in the tails of the propensity
score distribution--a simulation study. Am J Epidemiol 2010; 172(7): 843–854.

19. Rassen JA, Avorn J, Schneeweiss S. Multivariate-adjusted pharmacoepidemiolo-
gic analyses of confidential information pooled from multiple health care utiliza-
tion databases. Pharmacoepidemiol Drug Saf 2010; 19: 848–857.

20. Mahalanobis PC. On the generalized distance in statistics. Proc Natl Inst Sci In-
dia 1936; 12: 49–55.

21. Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA, Schneeweiss S. Instru-
mental variables II: in 25 variations, the physician prescribing preference gen-
erally was strong and reduced imbalance. J Clin Epidemiol 2009; 62(12):
1233–1241.

22. Rubin DB. The design versus the analysis of observational studies for causal
effects: parallels with the design of randomized trials. Stat Med 2007; 26(1):
20–36.

23. Rubin DB. Estimating causal effects from large data sets using propensity scores.
Ann Intern Med 1997; 127(8 Pt 2): 757–763.

24. Judkins DR, Morganstein D, Zador P, Piesse A, Barrett B, Mukhopadhyay P.
Variable selection and raking in propensity scoring. Stat Med 2007; 26(5):
1022–1033.

25. Weinberg CR. Toward a clearer definition of confounding. Am J Epidemiol
1993; 137(1): 1–8.

26. Greenland S. Quantifying biases in causal models: classical confounding vs
collider-stratification bias. Epidemiology 2003; 14(3): 300–306.

27. Pearl J. On a class of bias-amplifying variables that endanger effect estimates.
Paper presented at: Proceedings of the Twenty-Sixth Conference on Uncertainty
in Artificial Intelligence; AUAI, Corvallis, OR, 2010.

28. Brookhart MA, Sturmer T, Glynn RJ, Rassen J, Schneeweiss S. Confounding
control in healthcare database research: challenges and potential approaches.
Med Care 2010; 48(6 Suppl): S114–120.

29. Liu W, Brookhart MA, Setoguchi S. Impact of collider-stratification bias
(M-bias) in pharmacoepidemiologic studies: a simulaiton study. Pharmacoe-
pidemiol Drug Saf 2010; 19(S1): S212.

30. Myers J. Effects of adjusting for instrumental variables on bias and variance of
effect estimates. Am J Epidemiol 2011; 174: 1213–1222.

31. Pearl J. Invited Commentary: Understanding Bias Amplification. 2011; http://
bayes.cs.ucla.edu/csl_papers.html. [30 June 2011].

32. Angrist JD, Imbens G, Rubin DB. Identifcation of causal effects using instru-
mental variables. JASA 1996; 94(434): 444–455.

33. Rassen JA, Brookhart MA, Mittleman MA, Glynn RJ, Schneeweiss S. Instru-
mental variables I: exploiting quasi-random treatment choice to construe causal
relationships. J Clin Epidemiol 2009; 62(12): 1226–1232.

34. Brookhart MA, Rassen JA, Schneeweiss S. Instrumental variable methods in
comparative safety and effectiveness research. Pharmacoepidemiol Drug Saf
2010; 19: 537–554.

35. Schneeweiss S, Gagne JJ, Glynn RJ, Ruhl M, Rassen JA. Assessing the comparative
effectiveness of newly marketed medications: Methodological challenges and impli-
cations for drug development. Clin Pharmacol Ther 2011; 90: 777–790.

36. Pharamcoepidemiology Toolbox version 2 [computer program]. Boston, MA, 2011.
37. Schneeweiss S, Seeger JD, Maclure M, Wang PS, Avorn J, Glynn RJ. Perfor-

mance of comorbidity scores to control for confounding in epidemiologic studies
using claims data. Am J Epidemiol 2001; 154(9): 854–864.

38. Rassen JA, Avorn J, Schneeweiss S. Multivariate-adjusted pharmacoepidemiolo-
gic analyses of confidential information pooled from multiple health care utiliza-
tion databases. Pharmacoepidemiol Drug Saf 2010; 19(8): 848–857.

39. Rassen JA, Solomon DH, Curtis LH, Herrington L, Schneeweiss S. Privacy-
maintaining propensity score-based pooling of multiple databases applied to a
study of biologics. Med Care 2010; 48(6 Suppl): S83–89.

40. Rassen JA, Glynn RJ, Rothman KJ, Setoguchi S, Schneeweiss S. Applying pro-
pensity scores estimated in a full cohort to adjust for confounding in subgroup
analyses. Pharmacoepidemiol Drug Saf 2011. DOI: 10.1002/pds.2256. (in press)

41. Kloss S. Propensity Score & High-Dimensional Propensity Score Methods in
Observational Studies based on Administrative Data of Statutory Health Insur-
ances. Bremen, Universitat Bremen, 2010.

42. Rassen JA, Choudhry NK, Avorn J, Schneeweiss S. Cardiovascular outcomes
and mortality in patients using clopidogrel with proton pump inhibitors after per-
cutaneous coronary intervention or acute coronary syndrome. Circulation 2009;
120(23): 2322–2329.

automated confounding control in a safety surveillance system 49

Copyright © 2012 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2012; 21(S1): 41–49
DOI: 10.1002/pds

http://www.hdpharmacoepi.org
http://bayes.cs.ucla.edu/csl_papers.html
http://bayes.cs.ucla.edu/csl_papers.html

