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Introduction
With the ongoing development of the US Food and Drug 
Administration’s (FDA’s) Sentinel Initiative1 and similar systems 
around the world, near-real-time active medical product safety 
monitoring may soon be a reality. These systems will enable 
regulators and other stakeholders to monitor the outcomes 
of the use of medical products in distributed data networks 
comprising health-care utilization data for many millions of 
patients.2 The amount of data contained in such systems raises 
concerns that the systems will generate intractable numbers 
of false-positive alerts for purely statistical reasons.3 The non-
randomized data that will feed these systems are collected in 
routine care and may therefore signal relations that arise from 
medical perceptions or administrative constraints rather than 
from biology, raising the additional specter of systematic false-
positive findings.4,5

The challenges inherent in a broad-based monitoring system 
are similar to those confronted in every pharmacoepidemio-
logic study, and a system that incorporates sound design and 
analysis may reduce false-positive signals. We have developed 

a semi-automated, sequential, propensity-score (PS)–matched-
cohort approach6 to drug safety monitoring that is built on vali-
dated methods for drug safety research and can be easily deployed 
in distributed data networks.7,8 The approach involves (i) identify-
ing new users of a medical product, (ii) matching them by PS to 
new users of a comparator product, (iii) tabulating results across 
the distributed databases, and (iv) applying an automated alerting 
algorithm selected from an earlier simulation study.9

Had this system been in place at the time, it would have 
identified cerivastatin-induced rhabdomyolysis in longitu-
dinal electronic health-care data as early as a year before the 
drug was withdrawn from the US market.9 Given the concerns 
about statistical and systematic false positivity, we expanded 
the application of the approach to three additional examples, 
including one for which we did not expect an alert (rosuvastatin 
and rhabdomyolysis) and two examples for which we were not 
certain whether alerting would be expected: (i) telithromycin 
and hepatotoxicity and (ii) rosuvastatin and diabetes mellitus. 
We describe below what would have occurred had this system 
been in place at the time of US market approval of each drug.
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We developed a semi-automated active monitoring system that uses sequential matched-cohort analyses to assess 
drug safety across a distributed network of longitudinal electronic health-care data. In a retrospective analysis, we show 
that the system would have identified cerivastatin-induced rhabdomyolysis. In this study, we evaluated whether the 
system would generate alerts for three drug–outcome pairs: rosuvastatin and rhabdomyolysis (known null association), 
rosuvastatin and diabetes mellitus, and telithromycin and hepatotoxicity (two examples for which alerting would be 
questionable). Over >5 years of monitoring, rate differences (RDs) in comparisons of rosuvastatin with atorvastatin were 
−0.1 cases of rhabdomyolysis per 1,000 person-years (95% confidence interval (CI): −0.4, 0.1) and −2.2 diabetes cases 
per 1,000 person-years (95% CI: −6.0, 1.6). The RD for hepatotoxicity comparing telithromycin with azithromycin was 
0.3 cases per 1,000 person-years (95% CI: −0.5, 1.0). In a setting in which false positivity is a major concern, the system 
did not generate alerts for the three drug–outcome pairs.
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Results
Rosuvastatin and the risks of rhabdomyolysis and diabetes 
mellitus
Over >5 years of monitoring, we observed 8 cases of rhabdomy-
olysis among 57,998 PS-matched rosuvastatin and atorvastatin 
pairs who contributed a total of 45,571 person-years of follow-up 
(Figure 1). Two of the eight rhabdomyolysis cases occurred 
among rosuvastatin-treated patients, resulting in a difference 
at the end of the monitoring of −0.1 (95% confidence interval 
(CI), −0.4, 0.1) events per 1,000 person-years and a correspond-
ing rate ratio of 0.4 (95% CI: 0.1, 1.9). None of the three selected 
algorithms generated an alert in this example.

During similar follow-up times for the diabetes outcome, we 
observed 859 incident diabetes diagnoses among rosuvastatin-
treated patients as compared with 1,055 among atorvastatin-
treated patients, resulting in a rate difference (RD) at the end 
of the monitoring of −2.2 (95% CI: −6.0, 1.6) events per 1,000 
person-years (Figure 2) and a corresponding rate ratio of 0.9 
(95% CI: 0.9, 1.0). None of the selected algorithms generated 
alerts for this outcome either.

Telithromycin and risk of hepatotoxicity
We identified and matched 106,658 initiators of telithromycin 
to the same number of initiators of azithromycin over >5 years 
of monitoring following telithromycin marketing authoriza-
tion. The 106,658 matched pairs contributed a total of 17,720 
and 17,416 person-years of follow-up to the telithromycin and 
azithromycin groups, respectively (Figure 3). We observed 41 
cases of hepatotoxicity during follow-up, of which 23 (56%) 
occurred among telithromycin-treated patients. None of the 
three selected algorithms generated an alert. The RD at the end 
of the monitoring was 0.3 (95% CI: −0.4, 1.0) events per 1,000 
person-years and the rate ratio was 1.3 (95% CI: 0.7, 2.3).

Discussion
The proposed approach to active drug safety monitoring in 
electronic health-care data, which combines semi-automated 
procedures and some expert inputs, previously detected 

cerivastatin-induced rhabdomyolysis—a known rare safety 
issue—as much as a year before the drug was withdrawn from 
the market. That the system detected this known drug safety 
issue provides some reassurance that it performs according to 
expectation. In this application, the system did not generate 
alerts for rosuvastatin and rhabdomyolysis, a presumed true 
negative, or for two examples for which existing evidence is 
equivocal. False alerting is a major concern in emerging active 
medical product surveillance systems that will include data on 
many millions of patients. False positives, as well as false nega-
tives, can arise from many sources, including chance, but—of 
greater importance in observational data—from biases such as 
confounding by indication. Our approach to active monitoring 
is designed to mitigate such biases, by relying on new users, 
active comparators, and PS matching, in order to minimize the 
number of false-positive and false-negative signals from the out-
set, before they can have adverse public health consequences.

Around the time that the FDA authorized rosuvastatin for 
marketing in the United States, concern had been raised regard-
ing its association with an elevated risk of rhabdomyolysis as 
compared with other available statins. In particular, develop-
ment of the highest-dose rosuvastatin tablets was discontinued 
because of an unacceptable increase in risk of rhabdomyoly-
sis.10 However, the potential association between rosuvastatin 
and rhabdomyolysis has been evaluated in many postmarketing 
studies, none of which has found an elevated risk above and 
beyond that conferred by other available statins.11–15 Given 
the concern about false positivity in medical product safety-
monitoring systems that will monitor myriad products and out-
comes among many millions of patients, our finding of a true 
negative is again reassuring.

Recently, concern has been raised about whether statins 
increase patients’ risk of developing type 2 diabetes mellitus. A 
meta-analysis of 13 randomized trials comprising 91,140 par-
ticipants found that, over a mean follow-up of 4 years, statins 
were associated with a 9% increase in odds of diabetes as com-
pared with placebo or no treatment.16 Another meta-analysis 
reported similar findings and indicated that any effect of statins 
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Figure 1  Active monitoring for rhabdomyolysis among new users of rosuvastatin as compared with new users of atorvastatin.
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on diabetes is probably a class effect.17 Because we compared 
new users of rosuvastatin with new users of atorvastatin, our 
safety-monitoring question is one of comparative, rather than 
absolute, safety. Consistent with the meta-analyses, the system 
did not identify a higher risk of diabetes among patients treated 
with rosuvastatin as compared with atorvastatin. However, we 
did not assess whether the system would have identified the 
small diabetes risk associated with statins vs. no treatment. 
Subsequent monitoring activities could explore the relative 
safety of statins with respect to diabetes as compared with other 
drugs, such as ezetimibe, to treat dyslipidemia.

Evidence is mixed regarding whether telithromycin increases 
the risk of hepatotoxicity relative to similar antibiotic agents. 
A 2001 FDA advisory committee voted against approval of tel-
ithromycin primarily because of concerns about hepatotoxic-
ity. Following the completion of a controversial trial, the FDA 
approved telithromycin in 2004, stating that the frequency 
and severity of hepatotoxicity with telithromycin were similar 
to those of other macrolides.18 Through April 2006, the FDA 
received 42 cases of telithromycin-associated liver injury in 

its Adverse Event Reporting System.19 Post hoc analyses of the 
spontaneous reports detected an association between telithro-
mycin and reports of liver injury, including mild disorders up 
to fulminant hepatotoxicity.20,21 However, neither of two epide-
miological studies, each of which included more than 100,000 
initiators of telithromycin, found evidence to suggest that 
telithromycin increases the risk of hepatotoxicity as compared 
with other macrolides.22 Telithromycin remains on the market 
in the United States, carrying only a labeled warning about hepa-
totoxicity, not a black box warning.23

Our system did not generate alerts for telithromycin. Again, 
we used an active comparator, which reformulates the monitor-
ing question to one of comparative safety. These findings from 
our system are compatible with those of the other two large 
postmarketing database studies. Although the system did not 
generate alerts, the results also cannot rule out a small increased 
incidence of hepatotoxicity associated with telithromycin as 
compared with azithromycin. At the end of the monitoring time 
frame, the incidence rate of hepatotoxicity was 1.3 events per 
1,000 person-years in the telithromycin group and 1.0 events 
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Figure 2  Active monitoring for diabetes mellitus among new users of rosuvastatin as compared with new users of atorvastatin.
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Figure 3  Active monitoring for hepatotoxicity among new users of telithromycin as compared with new users of azithromycin.
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per 1,000 person-years in the azithromycin group, correspond-
ing to an RD of 0.3 (95% CI: −0.5 to 1.0) events per 1,000 per-
son-years and an incidence rate ratio of 1.3 (95% CI: 0.7–2.3). 
Although it is unclear whether the system’s lack of alerting in 
this example represents a true or false negative, this example 
highlights an important benefit of active monitoring systems 
such as Sentinel. Even in the absence of an alert, active monitor-
ing systems will provide useful, continuous decision support at 
low cost because secondary data are captured routinely and in 
near-real time and analyses can be performed sequentially in 
an automated fashion.

Our sequential PS–matched cohort framework for active drug 
safety monitoring offers several advantages when focusing on 
prespecified outcomes that may be related to medical products. 
As illustrated by the rosuvastatin examples, PS-matched cohorts 
easily enable monitoring of multiple outcomes per product. In 
addition, new-user cohort construction, PS estimation, and 
matching procedures can be largely automated.24 Balancing 
observed pretreatment confounders via PSs separately in each 
database also simplifies data aggregation across multiple data 
sources while obviating privacy concerns.7,8 In a drug’s early 
market phase, there is usually an abundance of users of an active 
comparator relative to users of the monitoring drug, offering 
sufficient opportunity to successfully match almost all patients 
exposed to the newly marketed drug. Resulting estimates of 
association then pertain to the effect observed among those 
exposed to the monitoring product as compared with the effect 
that would have been observed had those exposed to the moni-
toring product actually been exposed to the comparator agent. 
In addition, PS matching enables monitoring of simple mar-
ginal event rates between matched groups as the groups have 
been balanced on a large number of potential confounders.25 
Event rates can be expressed as observed (i.e., rate in the new 
drug group) and expected (i.e., rate in the comparator group), 
which allows for direct estimation of both absolute and rela-
tive measures of association and simplifies the application of a 
broad range of alerting algorithms without the need for further 
regression adjustment.

We encountered several practical limitations in implementing 
our approach in the four examples. Because we began monitor-
ing upon each drug’s market entry, we identified few new users 
of the new drug during the first few months after the product was 
launched, which precluded us from fitting large PS models in the 
first quarters. As a simple solution, we combined the first two 
quarters to create the first monitoring period. Although this ena-
bled us to fit PS models in data from the first two quarters, it nec-
essarily delayed the time to earliest possible alerting. However, 
it is unlikely that among few exposed patients there would be 
a sufficient number of events to generate an alert. In addition, 
although many aspects of an active monitoring system can be 
automated, human inputs remain critical elements in any public 
health surveillance activity. As in any pharmacoepidemiology 
study, our system requires stakeholders to choose a comparison 
group; eligibility and exclusion criteria; and exposure, follow-up, 
and outcome definitions. The assumptions made in each of these 
decisions will have bearing on the system’s performance. For 

example, choosing a truly unexposed comparison group, rather 
than a group exposed to an active comparator, allows stakehold-
ers to assess the absolute safety of a medical product but also 
increases the opportunity for false-positive and false-negative 
alerts due to increased confounding by indication.26

Known limitations of electronic health-care data pose chal-
lenges for broad application of Sentinel-like systems. Data on 
many types of adverse drug events, such as rashes, allergic 
reactions, and headaches, may not be fully captured in these 
data, and the validity of codes used to identify other events, 
such as seizures that do not result in emergency care, may be 
questionable. Furthermore, bias due to residual confounding 
is difficult to rule out because electronic health-care data often 
lack information on potential confounding variables, including 
smoking status, body mass index, functional status, frailty, and 
over-the-counter drug use. If, for example, clinicians preferen-
tially prescribed telithromycin to sicker patients, the resulting 
population imbalances might not be fully adjusted using health 
insurance claims data, leading to residual confounding and a 
false-positive alert. That the system did not generate an alert 
in this example provides some reassurance that confounding 
has been adequately addressed in this case. Finally, many fac-
ets of prospective medical product monitoring require further 
exploration, methods development, and testing. However, as our 
four examples to date suggest, active drug safety monitoring 
grounded in sound epidemiologic theory and application and 
appropriate clinical rationale can produce valid results despite 
conjecture to the contrary.27

In summary, using the examples, we demonstrated the via-
bility of a sequential PS–matched cohort approach to active 
monitoring that integrates clinical, epidemiological, and other 
expert stakeholder input with several semi-automated processes. 
In broad-based safety surveillance systems, false positivity is a 
major concern. Our system previously generated timely alerts 
about a known association, did not generate alerts for a known 
null association, and did not produce alerts in the other two 
examples for which alerting would be questionable.

Methods
Data sources. We used data from three sources to mimic monitoring 
across Sentinel’s distributed data network: (i) the HealthCore Integrated 
Research Database (HIRD), (ii) New Jersey Medicare Parts A and B data 
linked to the Pharmacy Assistance for the Aged and Disabled (PAAD) 
program, and (iii) Pennsylvania Medicare data linked to the Pharmaceu-
tical Assistance Contract for the Elderly (PACE) program. HIRD contains 
longitudinal claims data comprising all filled prescriptions and clinical 
encounters from 14 Blue Cross and/or Blue Shield–licensed health plans 
in the northeastern, southeastern, mid-Atlantic, midwestern, and western 
regions of the United States. Starting in the third quarter of 2004, the 
amount of HIRD data increased substantially as data from more plans 
became available. Both PACE and PAAD provide medications at minimal 
expense to patients aged ≥65 years with low income but who do not meet 
the Medicaid annual income threshold. The Medicare Parts A and B data 
include hospital discharge information and all fee-for-service charges, 
with vital status information from the Social Security Administration’s 
Death Master File. We included PACE- and PAAD-linked Medicare data 
only through the end of 2005.

The Brigham and Women’s Hospital Institutional Review Board 
approved this study.



Clinical pharmacology & Therapeutics� 5

articles

Sequential matched-cohort monitoring framework. We replicated pro-
spective monitoring as if new data became available on a quarterly basis. 
We divided each database into sequential data sets defined by claims 
occurring in each calendar quarter and queried each data set to identify 
all new users of each of the drugs of interest and of their active com-
parators. We applied eligibility and exclusion criteria for each example 
as described below.28 Within each data set, we constructed separate PS 
models and used the PS to match new users of the monitoring drugs 
to new users of the active comparator drugs in a 1:1 ratio. We used the 
180 days preceding each patient’s date of drug initiation (index date) to 
identify variables for the PS models, which included a set of predefined 
potential confounders for each example (listed below) plus potential 
confounders identified using the high-dimensional PS algorithm29 with 
its small sample option (v2, http://www.hdpharmacoepi.org; ref. 30). In 
each model, we considered up to 100 empirically identified potential 
confounders from each of three domains: procedure codes, diagnosis 
codes, and drugs used. Patients exposed to the monitoring drugs and 
the comparators could be matched only if their index dates occurred in 
the same quarterly data set.

Data pooling and follow-up. In each sequential data set, we identified 
outcomes for PS-matched patients who remained under follow-up, as 
defined below for each example. We combined the exposure, outcome, 
and follow-up time information for each calendar quarter across the 
three databases. This approach to pooling across a distributed data net-
work enables multivariable-adjusted analyses while maintaining data 
privacy.7,8 These data elements served as inputs into the alerting algo-
rithms. For example, inputs from the first period included the number of 
matched pairs with index dates in the first calendar quarter, the number 
of outcomes in each exposure group, and the total follow-up time in 
each group through the end of the first period. The algorithm inputs 
from the second period included the same corresponding data for new 
users with index dates in the second calendar quarter plus additional fol-
low-up and outcome data for patients with index dates in the first period 

whose follow-up continued into the second period (see Supplementary 
Figure S1 online). Because relatively few patients use a new drug when 
it first enters the market, we combined the first two calendar quarters in 
which prescriptions for the new drug began to appear in the databases 
to create the first monitoring period in each example.

Algorithm selection and application. Alerting algorithms refer to 
sequential statistical monitoring approaches, such as group sequential 
monitoring methods and sequential probability ratio tests, that could be 
used for medical product safety monitoring. In a statistical simulation 
study, we found that the relative performance of algorithms with respect 
to the accuracy and timeliness of alerting, in the setting of prospective 
safety monitoring, varied substantially depending on the characteris-
tics of specific scenarios.9 In the supplementary information online, we 
provide the list of algorithms (Supplementary Table S1) that we tested 
in the simulation study, along with their relative performances under 
varying parameter constellations (Supplementary Figure S2). The rela-
tive performance of the algorithms depended on event frequency and on 
user preference for identifying potential safety issues with high sensitivity 
vs. high specificity. We used the results of the simulation study to select 
three algorithms for each example, based on three values for preference 
for sensitivity vs. specificity that regulators may define.31 To select the 
algorithms, we estimated the expected number of events based on the 
number of exposed patients observed in the first two calendar quarters 
(assuming that utilization of the drug would increase in each period) and 
on literature estimates of the incidence of each outcome. The selected 
algorithms and their operating characteristics from the simulation study 
are presented in Table 1. Additional operating characteristics of the 93 
algorithms tested in 600,000 simulated scenarios are available from the 
authors.

Specifics of each example. Rosuvastatin and rhabdomyolysis and 
diabetes mellitus: We selected atorvastatin as an active comparator 
because it was available on the market before the introduction of ceriv-
astatin and it has low risk of rhabdomyolysis.32 We defined new users of 

Table 1  Selected algorithms and their operating characteristics based on results of a prior simulation study

Example w Algorithm description
Overall sensitivity 

(95% CI)
Overall specificity  

(95% CI)
Event-based  

sensitivity (95% CI)
Event-based  

specificity (95% CI)

Rosuvastatin and 
rhabdomyolysis

0.05 Pocock-like boundary  
(α = 0.10)

0.1974 (0.1876, 0.2073) 0.9987 (0.9975, 0.9998) 0.2419 (0.2389, 0.2448) 0.9994 (0.9983, 1.0000)

0.10 Nominal type 1 error  
(α = 0.10)

0.3626 (0.3507, 0.3746) 0.9772 (0.9724, 0.9819) 0.3844 (0.3810, 0.3878) 0.9857 (0.9799, 0.9914)

0.15 Nominal type 1 error  
(α = 0.10)

0.3626 (0.3507, 0.3746) 0.9772 (0.9724, 0.9819) 0.3844 (0.3810, 0.3878) 0.9857 (0.9799, 0.9914)

Rosuvastatin and 
diabetes mellitus

0.05 Exact P value for  
period-specific 
estimate <0.000032

0.7839 (0.7721, 0.7958) 0.9987 (0.9977, 0.9997) 0.8091 (0.8089, 0.8093) 0.9981 (0.9980, 0.9983)

0.10 Pocock-like boundary  
(α = 0.000001)

0.9534 (0.9473, 0.9594) 0.9862 (0.9830, 0.9893) 0.8881 (0.8879, 0.8882) 0.9905 (0.9902, 0.908)

0.15 Pocock-like boundary  
(α = 0.000001)

0.9534 (0.9473, 0.9594) 0.9862 (0.9830, 0.9893) 0.8881 (0.8879, 0.8882) 0.9905 (0.9902, 0.908)

Telithromycin and 
hepatotoxicity

0.05 Nominal type 1 error  
(α = 0.01)

0.4360 (0.4236, 0.4483) 0.9984 (0.9972, 0.9997) 0.4826 (0.4809, 0.4844) 0.9991 (0.9983, 0.9998)

0.10 O’Brien-Flemming-like 
boundary (α = 0.20)

0.5532 (0.5408, 0.5656) 0.9903 (0.9871, 0.9934) 0.5196 (0.5178, 0.5213) 0.9968 (0.9954, 0.9982)

0.15 Nominal type 1 error  
(α = 0.05)

0.6321 (0.6201, 0.6441) 0.9605 (0.9543, 0.9667) 0.5825 (0.5808, 0.5842) 0.9887 (0.9861, 0.9913)

Listed are the algorithms that achieved highest event-based performance at three values of w (defined in the following) in a simulation study.9 For each example, the results 
were restricted to scenarios that resembled monitoring for the particular example. w is a user-defined weight that reflects trade-offs between the costs of false negatives and 
false positives; smaller weights reflect higher relative costs of false positives. Event-based sensitivity is the proportion of observed exposed events in alert-worthy scenarios (i.e., 
scenarios in which a safety issue of interest exists; where the true underlying risk ratio is more than or equal to the alerting threshold) that occurred after the given algorithm 
generated an alert. Event-based specificity is the proportion of observed exposed events in non-alert-worthy scenarios (i.e. scenarios in which no safety issue of interest exists; 
where the true underlying risk ratio is less than the alerting threshold) that occurred before or in the absence of an alert by the given algorithm.
CI, confidence interval.
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rosuvastatin or atorvastatin as those who had not used any statin in the 
180 days preceding the index date. We excluded patients with evidence 
of diabetes, myopathy, renal dysfunction, or liver disease before the index 
date. We used the same sequential PS–matched cohorts for both rhab-
domyolysis and diabetes mellitus outcomes. In addition to age and sex, 
we included in the PS models risk factors for rhabdomyolysis, including 
hypothyroidism and use of drugs that either cause or interact with statins 
to cause rhabdomyolysis,33 plus the following diabetes risk factors: coro-
nary artery disease, congestive heart failure, hemorrhagic stroke, hyper-
tension, dyslipidemia, peripheral vascular disease, and use of angiotensin 
converting enzyme inhibitors, β-blockers, nonstatin cholesterol-lowering 
drugs, ticlopidine, clopidogrel, and nitrates.

We followed patients for rhabdomyolysis from their index dates until 
they experienced the event, discontinued their index treatment (as 
defined by a gap in treatment of >14 days), switched to a different statin, 
died, or disenrolled. We defined rhabdomyolysis using the algorithm 
for claims data validated by Andrade et al., which had a positive predic-
tive value of 74% in a network of managed care organization databas-
es.34 For diabetes monitoring, we followed patients until they received a 
diagnosis of diabetes, discontinued their index treatment (plus a 60-day 
grace period added to the end of the days’ supply of the last prescription), 
switched to a different statin, died, or disenrolled. We defined diabetes 
using a validated algorithm for claims data that has been found to have 
a positive predictive value of 97% (ref. 35).

Telithromycin and hepatotoxicity: We defined new use of telithromycin 
or azithromycin—an active comparator whose indications are similar to 
those for telithromycin, was available at the time of telithromycin approval 
and was commonly used—as no prior use of either drug in the 180 days 
preceding the index date. We excluded patients with evidence of hepatic 
injury or impairment, including those with diagnoses for alcoholism. In 
addition to age and sex, we included codes for the following potential 
risk factors for liver injury as predefined covariates in the PS models:36–38 
diabetes, illicit drug use, renal dysfunction, and drugs with potential for 
liver damage, defined as those considered to be category 3 hepatotoxic 
(i.e., clear literature evidence of life-threatening hepatotoxicity or death) 
in at least one of five drug compendia as reported by Guo et al.39 We fol-
lowed patients until they experienced acute hepatotoxicity or died, or for 
a maximum of 60 days. We defined hepatotoxicity as the occurrence of 
an in-hospital diagnostic or procedural code indicating acute liver injury. 
These codes have been validated in the context of acetaminophen-induced 
hepatotoxicity, with a positive predictive value of 78% (ref. 40).

SUPPLEMENTARY MATERIAL is linked to the online version of the paper at 
http://www.nature.com/cpt
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